a) With x = 2008 => \(A=2\cdot\left|2008-2007\right|+\left|2008-2009\right|=2+1=3\)
b) Cause A = \(2\cdot\left|x-2007\right|+\left|x-2009\right|\)
So for A = x - 2010
<=> \(2\cdot\left|x-2007\right|+\left|x-2009\right|=x-2010\) (*)
+) With x < 2007
(*) <=> 2(2007 - x) + (2009 - x) = x - 2010
<=> 6023 - 3x = x - 2010
<=> 6023 + 2010 = 4x
<=> x = \(\dfrac{8033}{4}>2007\) (Removed)
+) With \(2007\le x\le2009\)
(*) <=> \(2\cdot\left(x-2007\right)+\left(2009-x\right)=x-2010\)
<=> \(x-2005=x-2010\) (impossible)
+) With \(x>2009\)
(*) <=> \(2\cdot\left(x-2007\right)+\left(x-2009\right)=x-2010\)
<=> \(3x-6023=x-2010\)
<=> \(2x=4013\)
<=> \(2x=\dfrac{4013}{2}< 2009\) (Removed)
So , There isn't any roots of this equation
c) Applying this inequality
With a,b are two numbers , we have \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Equation occur <=> ab \(\ge\) 0
So \(A=2\cdot\left|x-2007\right|+\left|x-2009\right|\)
\(=\left|x-2007\right|+\left|2009-x\right|+\left|x-2007\right|\ge\left|x-2007+2009-x\right|+\left|x-2007\right|\)
\(=2+\left|x-2007\right|\ge2\)
=> Min(A) = 2 <=> \(\left\{{}\begin{matrix}x=2007\\\left(x-2007\right)\left(2009-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2007\\2007\le x\le2009\end{matrix}\right.\)
So Min(A) = 2 <=> x = 2007