Lê Quốc Trần Anh Coordinator
14/05/2018 at 13:01-
1st way : We have
\(\sqrt{8}^2=8=6+2\)
\(\left(\sqrt{5}+1\right)^2=5+2\sqrt{5}+1=6+2\sqrt{5}\)
Cause \(2\sqrt{5}\ge2\sqrt{4}=4>2\)
So \(\sqrt{8}< \sqrt{5}+1\)
2st way :
\(\sqrt{8}< \sqrt{9}=3=2+1=\sqrt{4}+1< \sqrt{5}+1\)
So ......
Lê Quốc Trần Anh selected this answer. -
1st way: \(\sqrt{8}=\text{2.82842712475}\)
\(\sqrt{5}+1=\text{3.2360679775}\)
So \(\sqrt{8}< \sqrt{5}+1\)
2nd way:
\(\sqrt{8}< \sqrt{9}=3\)
\(\sqrt{5}+1>\sqrt{4}+1=2+1=3\)
So \(\sqrt{8}< \sqrt{5}+1\)