MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

17/05/2018 at 05:25
Answers
1
Follow

Given: a,b > 0

Prove that: \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)




    List of answers
  • ...
    Kaya Renger Coordinator 18/05/2018 at 14:43

    \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{3}\right)^3\)

    <=> \(8.\dfrac{a^3+b^3}{2}\ge a^3+3a^2b+3ab^2+b^3\)

    <=> \(3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)

    <=> \(a^3+b^3-a^2b-ab^3\ge0\)

    <=> \(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

    <=> \(\left(a+b\right)\left(a-b\right)^2\ge0\)  (Right)

    So ...... 


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM