Dao Trong Luan Coordinator
17/05/2018 at 05:25-
\(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{3}\right)^3\)
<=> \(8.\dfrac{a^3+b^3}{2}\ge a^3+3a^2b+3ab^2+b^3\)
<=> \(3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)
<=> \(a^3+b^3-a^2b-ab^3\ge0\)
<=> \(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
<=> \(\left(a+b\right)\left(a-b\right)^2\ge0\) (Right)
So ......