MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

17/05/2018 at 05:29
Answers
2
Follow

With all a,b

Prove that: \(a^4+b^4\ge a^3b+b^3a\)




    List of answers
  • ...
    Kaya Renger Coordinator 17/05/2018 at 06:38

    \(a^4+b^4\ge a^3b+ab^3\)

    <=> \(a^4+b^4-a^3b-ab^3\ge0\)

    <=> \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

    <=> \(\left(a^3-b^3\right)\left(a-b\right)\ge0\)

    <=> \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

    Cause \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\in R\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)

    So ...... 

    Dao Trong Luan selected this answer.
  • ...
    Fc Alan Walker 18/05/2018 at 13:36

    a4+b4≥a3b+ab3

    <=> a4+b4−a3b−ab3≥0

    <=> a3(a−b)−b3(a−b)≥0

    <=> (a3−b3)(a−b)≥0

    <=> (a−b)2(a2+ab+b2)≥0

    Cause ⎧⎩⎨⎪⎪⎪⎪(a−b)2≥0∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM