Dao Trong Luan Coordinator
17/05/2018 at 05:29-
\(a^4+b^4\ge a^3b+ab^3\)
<=> \(a^4+b^4-a^3b-ab^3\ge0\)
<=> \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
<=> \(\left(a^3-b^3\right)\left(a-b\right)\ge0\)
<=> \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Cause \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\in R\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)
So ......
Dao Trong Luan selected this answer. -
Fc Alan Walker 18/05/2018 at 13:36
a4+b4≥a3b+ab3
<=> a4+b4−a3b−ab3≥0
<=> a3(a−b)−b3(a−b)≥0
<=> (a3−b3)(a−b)≥0
<=> (a−b)2(a2+ab+b2)≥0
Cause ⎧⎩⎨⎪⎪⎪⎪(a−b)2≥0∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0