Let a,b,c are positive real numbers satisfy \(a^2+b^2+c^2=1\) Show that : \(\Sigma\dfrac{a^3}{b+c}\ge\dfrac{1}{2}\)
Let a,b,c are positive real numbers satisfy \(a^2+b^2+c^2=1\)
Show that : \(\Sigma\dfrac{a^3}{b+c}\ge\dfrac{1}{2}\)