Lê Quốc Trần Anh Coordinator
13/05/2018 at 03:15-
+) With n = 1 then
\(16^n-15n-1=16-15-1=0⋮225\)
+) With n = 2 then
\(16^n-15n-1=16^2-15.2-1=225⋮225\)
Suppose \(\left(16^n-15n-1\right)⋮225\)
We are going to prove that \(\left(16^{n+1}-15\left(n+1\right)-1\right)⋮225\) too
We can see \(16^{n+1}-15\left(n+1\right)-1=16.16^n-15n-15-1=\left(16^n-15n-1\right)+15.16^n-15\)
Following Inductive hypothesis , \(\left(16^n-15n-1\right)⋮225\)
And \(15.16^k-15=15\left(16^k-1\right)⋮15.15=225\)
So \(\left(16^{n+1}-15\left(n+1\right)-1\right)⋮225\)
Conclude \(\left(16^n-15n-1\right)⋮225\) \(\forall n\in N\)
Lê Quốc Trần Anh selected this answer. -
Put B = 16n - 15n - 1
* With n = 0 <=> B0 = 160 - 15.0 - 1 = 0 ⋮ 225
* With n = 1 <=> B1 = 161 - 15.1 - 1 = 0 ⋮ 225
..........................
* With n = k <=> Bk = 16k - 15k - 1 ⋮ 225
We must prove that with n = k+1 then B ⋮ 225 too
We have: n = k+1
Bk+1 = 16k+1 - 15.(k+1) - 1 = 16k.16 - 15k - 15 - 1 = 16k.16 - 15k - 16
= 16(16k - 1) - 15k
So Bk+1 - 225k = 16(16k - 15k - 1) = 16.Bk
Bk ⋮ 225, 225 ⋮ 225 so Bk+1 ⋮ 225.
So 16n - 15n - 1 ⋮ 225