MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Anh Duy

26/04/2018 at 15:18
Answers
4
Follow

13) Given integer numbers a, b, c, d such that: \(a^4+b^4+c^4+d^4=2018\)

Find the value(s) of \(a^2+b^2+c^2+d^2\)




    List of answers
  • ...
    Lê Anh Duy 02/05/2018 at 10:32

    HAVE YOU EVER TRIED: 2, 3, 5, 6?

  • ...
    Dinh Hung 27/04/2018 at 06:41

    We have : \(2018.4=\left(1^2+1^2+1^2+1^2\right)\left(a^4+b^4+c^4+d^4\right)\ge\left(a^2+b^2+c^2+d^2\right)^2\) 

    (Inquality Bunyakovsky)

    \(\Leftrightarrow-\sqrt{2018.4}\le a^2+b^2+c^2+d^2\le\sqrt{2018.4}\)

    \(\Leftrightarrow0\le a^2+b^2+c^2+d^2< 90\)

  • ...
    Kaya Renger Coordinator 29/04/2018 at 03:55

    Cause \(a^4,b^4,c^4,d^4\) are square numbers 

    So when they divided for 3 , Their remainder must be 1 or 0

    <=> \(\left(a^4+b^4+c^4+d^4\right)\equiv1\left(mod3\right)\)

    or \(\left(a^4+b^4+c^4+d^4\right)\equiv0\left(mod3\right)\)

    But \(2018\equiv2\left(mod3\right)\)

    So there isn't any root of (a;b;c;d) that satisfy the equation

    It also means that we can't calculate the value of \(a^2+b^2+c^2+d^2\)

  • ...
    Lê Anh Duy 27/04/2018 at 15:38

    But there is only one value for a2 + b2 + c2 + d2, can you find that?


Post your answer

Please help Lê Anh Duy to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM