MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

¤«

16/04/2018 at 14:31
Answers
4
Follow

Let a , b, c be a positive real numbers , prove that :

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

What is the condition for the equality ?

thank you




    List of answers
  • ...
    Kaya Renger Coordinator 20/04/2018 at 05:35

    How about using Mincopsky's Inequality ? 

  • ...
    Nguyễn Huy Thắng 24/04/2018 at 14:47

    By AM-GM's ineq: \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

    \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{c^2+b^2}{2}}+\sqrt{\dfrac{a^2+c^2}{2}}\)

    \(\LeftrightarrowΣ_{cyc}\dfrac{a^2}{b}-Σ_{cyc}\sqrt{ab}\geΣ_{cyc}\sqrt{\dfrac{a^2+b^2}{2}}-Σ_{cyc}\sqrt{ab}\left(1\right)\)

    We have: \(LHS_{\left(1\right)}\geΣ_{cyc}\dfrac{a^2}{b}-Σ_{cyc}a=Σ_{cyc}\dfrac{\left(a-b\right)^2}{b}\)

    And \(RHS_{\left(1\right)}=Σ_{cyc}\dfrac{\left(a-b\right)^2}{2\left(\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\right)}\)

    Or \(Σ_{cyc}\left(\left(a-b\right)^2\left(\dfrac{1}{b}-\dfrac{1}{2\left(\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\right)}\right)\right)\ge0\)

    \(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\left(\dfrac{\dfrac{\left(\sqrt{2\left(a^2+b^2\right)}+2\sqrt{ab}+b\right)\left(\sqrt{2\left(a^2+b^2\right)}+2\sqrt{ab}-b\right)}{\left(\sqrt{2\left(a^2+b^2\right)}+\sqrt{ab}+b\right)^2}}{\dfrac{1}{b}+\dfrac{1}{2\left(\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\right)}}\right)\right)\ge0\)

    Done !!

  • ...
    Nguyễn Huy Thắng 24/04/2018 at 14:40

    By AM-GM's ineq: \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

    \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}+\sqrt{\dfrac{a^2+c^2}{2}}\)

    \(\LeftrightarrowΣ_{cyc}\dfrac{a^2}{b}-Σ_{cyc}\sqrt{ab}\geΣ_{cyc}\sqrt{\dfrac{a^2+b^2}{2}}-Σ_{cyc}\sqrt{ab}\left(1\right)\)

    We have: \(LHS_{\left(1\right)}\geΣ_{cyc}\dfrac{a^2}{b}-Σ_{cyc}a=Σ_{cyc}\dfrac{\left(a-b\right)^2}{b}\)

    And \(RHS_{\left(1\right)}=\dfrac{\left(a-b\right)^2}{2\left(\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\right)}\)

    Or \(Σ_{cyc}\left(\left(a-b\right)^2\left(\dfrac{1}{b}-\dfrac{1}{2\left(\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\right)}\right)\right)\ge0\)

    \(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\dfrac{\left(\sqrt{2\left(a^2+b^2\right)}+2\sqrt{ab}+b\right)\left(\sqrt{2\left(a^2+b^2\right)}+2\sqrt{ab}-b\right)}{\dfrac{1}{b}+\dfrac{1}{2\left(\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\right)}}\right)\ge0\)

    Done !!

  • ...
    Nguyễn Huy Thắng 24/04/2018 at 14:25

    By AM-GM's ineq: \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

    \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}+\sqrt{\dfrac{c^2+a^2}{2}}\)

    \(\LeftrightarrowΣ_{cyc}\dfrac{a^2}{b}-Σ_{cyc}\left(\sqrt{ab}\right)\geΣ_{cyc}\sqrt{\dfrac{a^2+b^2}{2}}-Σ_{cyc}\left(\sqrt{ab}\right)\left(1\right)\)

    We have: \(LHS_{\left(1\right)}\geΣ_{cyc}\dfrac{a^2}{b}-Σ_{cyc}a=Σ_{cyc}\dfrac{\left(a-b\right)^2}{b}\)

    And \(RHS_{\left(1\right)}=Σ_{cyc}\left(\dfrac{\left(a-b\right)^2}{2\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\right)\)

    Or \(Σ_{cyc}\dfrac{\left(a-b\right)^2}{b}\geΣ_{cyc}\left(\dfrac{\left(a-b\right)^2}{2\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\right)\)

    \(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\left(\dfrac{1}{b}-\dfrac{1}{2\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\right)\right)\ge0\)

    \(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\dfrac{\dfrac{\left(\sqrt{2\left(a^2+b^2\right)}+\sqrt{ab}+b\right)\left(\sqrt{2\left(a^2+b^2\right)}+\sqrt{ab}-b\right)}{b^2\left(\sqrt{2\left(a^2+b^2\right)}+\sqrt{ab}\right)^2}}{\dfrac{1}{b}+\dfrac{1}{2\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}}\right)\ge0\)

    Done !!!


Post your answer

Please help ¤« to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM