MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

HSG Phan Huy Toàn

11/05/2018 at 09:09
Answers
2
Follow

A = 2 * | x - 2007 | +  | x - 2009 |

a, Find the value of A know x = 2008

b, Find x for A = x - 2010

c, Find x to A to reach the smallest value
The question review of Lê Quốc Trần Anh 
Solve exercises for I 
I review
 




    List of answers
  • ...
    Alone 11/05/2018 at 10:08

    a,The value of A=\(2\times\left|2008-2007\right|+\left|2008-2009\right|\)\(=\)\(2\times\left|1\right|+\left|-1\right|=2\times1+1=2+1=3\)

    b,With \(x< 2007\)then A=x-2010

    \(\Rightarrow2\times-\left(x-2007\right)-\left(x-2009\right)=x-2010\)

    \(\Leftrightarrow-2x+4014-x+2009=x-2010\)\(\Leftrightarrow-4x=-2010-4014-2009\Leftrightarrow-4x=-8033\)

    \(\Leftrightarrow x=\dfrac{8033}{4}>\dfrac{8028}{4}=2007\)(not satisfy)

    With \(2007\le x< 2009\) then \(2\times\left(x-2007\right)-\left(x-2009\right)=x-2010\)

    \(\Leftrightarrow2x-4014-x+2009=x-2010\)

    \(\Leftrightarrow2x-x-x=-2010-2009+4014\)\(\Leftrightarrow0=-5\)(not satisfy)

    With \(x\ge2009\) then 

    \(2\times\left(x-2007\right)+\left(x-2009\right)=x-2010\)

    \(\Leftrightarrow2x-4014+x-2009=x-2010\)

    \(\Leftrightarrow2x=-2010+2009+4014\Leftrightarrow2x=4013\)

    \(\Leftrightarrow x=2006,5< 2009\)(not satisfy)

     So not have x satisfy

    c,We have:A=\(\left|x-2007\right|+\left|x-2009\right|+\left|x-2007\right|\)

    \(=\left|x-2007\right|+\left|2009-x\right|+\left|x-2007\right|\)\(\ge\left|x-2007+2009-x\right|+\left|x-2007\right|=\left|2\right|+\left|x-2007\right|\ge2\)

    So the smallest of A is 2 when \(x=2007\)

    HSG Phan Huy Toàn selected this answer.
  • ...
    Kaya Renger Coordinator 11/05/2018 at 12:43

    a) With x = 2008 => \(A=2\cdot\left|2008-2007\right|+\left|2008-2009\right|=2+1=3\)

    b) Cause A = \(2\cdot\left|x-2007\right|+\left|x-2009\right|\)

    So for A = x - 2010

    <=> \(2\cdot\left|x-2007\right|+\left|x-2009\right|=x-2010\)   (*)

    +) With x < 2007 

    (*) <=> 2(2007 - x) + (2009 - x) = x - 2010 

         <=>  6023 - 3x = x - 2010

         <=>  6023 + 2010 = 4x

         <=>  x = \(\dfrac{8033}{4}>2007\)  (Removed) 

    +) With \(2007\le x\le2009\)

    (*) <=> \(2\cdot\left(x-2007\right)+\left(2009-x\right)=x-2010\)

         <=> \(x-2005=x-2010\) (impossible) 

    +) With \(x>2009\)

    (*)  <=> \(2\cdot\left(x-2007\right)+\left(x-2009\right)=x-2010\)

          <=>  \(3x-6023=x-2010\)

          <=> \(2x=4013\)

          <=>  \(2x=\dfrac{4013}{2}< 2009\)  (Removed)

    So , There isn't any roots of this equation 

    c) Applying this inequality 

    With a,b are two numbers , we have \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

    Equation occur <=> ab \(\ge\) 0

    So \(A=2\cdot\left|x-2007\right|+\left|x-2009\right|\)

             \(=\left|x-2007\right|+\left|2009-x\right|+\left|x-2007\right|\ge\left|x-2007+2009-x\right|+\left|x-2007\right|\)

                                                                                      \(=2+\left|x-2007\right|\ge2\)

    => Min(A) = 2 <=> \(\left\{{}\begin{matrix}x=2007\\\left(x-2007\right)\left(2009-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2007\\2007\le x\le2009\end{matrix}\right.\)

    So Min(A) = 2 <=> x = 2007 


Post your answer

Please help HSG Phan Huy Toàn to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM