MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

17/05/2018 at 13:11
Answers
2
Follow

Prove that: \(a^4+b^4+2\ge4ab\)




    List of answers
  • ...
    Kaya Renger Coordinator 17/05/2018 at 15:00

    Applying Cauchy's inequality , we have 

    \(\left(a^4+1\right)+\left(b^4+1\right)\ge2a^2+2b^2=2\left(a^2+b^2\right)\ge2.2ab=4ab\)

    Equation occur <=> a = b = \(\pm1\)

    Lê Quốc Trần Anh selected this answer.
  • ...
    Fc Alan Walker 18/05/2018 at 13:34

    Applying Cauchy's inequality , we have 

    (a4+1)+(b4+1)≥2a2+2b2=2(a2+b2)≥2.2ab=4ab

    Equation occur <=> a = b = ±1


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM