MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

12/05/2018 at 14:19
Answers
2
Follow

Find the triple pairs of integer (x;y;z) that satisfy: 

\(2^x+2^y+2^z=2336\)




    List of answers
  • ...
    Alone 13/05/2018 at 02:05

    Because the role of a,y,z is the same so we suppose \(x\le y\le z\)

    \(2^z< 2336\Rightarrow z\le11\)

    We have:\(2^x+2^y+2^z\le3.2^z\Leftrightarrow2336\le3.2^z\)\(\Leftrightarrow2^z\ge\dfrac{2336}{3}\Rightarrow z\ge10\)

    So z\(\in\left\{10,11\right\}\)

    With z=10 then \(2^x+2^y=2336-2^{10}=1312\)

        \(2^x+2^y\le2.2^y\Rightarrow2.2^y\ge1312\Rightarrow2^y\ge656\Rightarrow y\ge10\)

      \(2^y< 1312\Rightarrow y\le10\)

     So y=10 so \(2^x=2336-2^{10}-2^{10}=288\)(not satisfy)

    With z=11 then \(2^x+2^y=288\)

     \(2^y< 288\Rightarrow y\le8\)

     \(2^y.2\ge2^x+2^y=288\Rightarrow2^y\ge144\Rightarrow y\ge8\)

    So y=8 then \(2^x=288-2^8=32\Rightarrow x=5\)

    Answer :(x,y,z) is the permutation of \(\left(5,8,11\right)\)

    Kaya Renger selected this answer.
  • ...
    Alone 13/05/2018 at 02:07

    oh;the first row :x,y,z not a,y,z


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM