MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

" LEAGUE OF LEGENDS "

10/05/2018 at 15:25
Answers
2
Follow

Let a , b , c be positive numbers . Prove that : \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{1}{2}\left(a+b+c\right)\)


dsytg


    List of answers
  • ...
    Kaya Renger Coordinator 11/05/2018 at 00:43

    Applying Cauchy's inequaility , we have 

    \(\dfrac{ab}{a+b}\le\dfrac{\dfrac{\left(a+b\right)^2}{4}}{a+b}=\dfrac{a+b}{4}\)

    \(\dfrac{bc}{b+c}\le\dfrac{\dfrac{\left(b+c\right)^2}{4}}{b+c}=\dfrac{b+c}{4}\)

    \(\dfrac{ca}{c+a}\le\dfrac{\dfrac{\left(c+a\right)^2}{4}}{c+a}=\dfrac{c+a}{4}\)

    So \(\sum\left(\dfrac{ab}{a+b}\right)\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{2\left(a+b+c\right)}{4}=\dfrac{1}{2}\left(a+b+c\right)\)

    Equation occur

    <=> a = b = c 

  • ...
    Kaya Renger Coordinator 11/05/2018 at 13:26

    Another way :

    Applying Cauchy's inequality , we have 

    \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{ab}{2\sqrt{ab}}+\dfrac{bc}{2\sqrt{bc}}+\dfrac{ca}{2\sqrt{ca}}=\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

    We have an extra inquality : With a,b,c are positive then \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

    Prove: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

    <=>  \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)  (Right) 

    So \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)  is true

    We have 

    \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\dfrac{1}{2}.\left(a+b+c\right)\)

    Equation occur <=> a = b = c 


Post your answer

Please help " LEAGUE OF LEGENDS " to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM