" LEAGUE OF LEGENDS "
10/05/2018 at 15:25-
Applying Cauchy's inequaility , we have
\(\dfrac{ab}{a+b}\le\dfrac{\dfrac{\left(a+b\right)^2}{4}}{a+b}=\dfrac{a+b}{4}\)
\(\dfrac{bc}{b+c}\le\dfrac{\dfrac{\left(b+c\right)^2}{4}}{b+c}=\dfrac{b+c}{4}\)
\(\dfrac{ca}{c+a}\le\dfrac{\dfrac{\left(c+a\right)^2}{4}}{c+a}=\dfrac{c+a}{4}\)
So \(\sum\left(\dfrac{ab}{a+b}\right)\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{2\left(a+b+c\right)}{4}=\dfrac{1}{2}\left(a+b+c\right)\)
Equation occur
<=> a = b = c
-
Another way :
Applying Cauchy's inequality , we have
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{ab}{2\sqrt{ab}}+\dfrac{bc}{2\sqrt{bc}}+\dfrac{ca}{2\sqrt{ca}}=\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
We have an extra inquality : With a,b,c are positive then \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Prove: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\) (Right)
So \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) is true
We have
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\dfrac{1}{2}.\left(a+b+c\right)\)
Equation occur <=> a = b = c