MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

17/05/2018 at 05:31
Answers
2
Follow

With all a,b.

Prove that: a, \(\left(a+b\right)^2\ge4ab\)

                   b, \(a+b\ge2\sqrt{ab}\)

Simple haha




    List of answers
  • ...
    Kaya Renger Coordinator 17/05/2018 at 06:26

    You have to have a condition : \(a,b>0\)

    a) \(\left(a+b\right)^2\ge4ab\)

    <=> \(a^2+2ab+b^2\ge4ab\)

    <=>  \(a^2-2ab+b^2\ge0\)

    <=>  \(\left(a-b\right)^2\ge0\)  (It's true)

    => \(\left(a+b\right)^2\ge4ab\)

    b) Applying Cauchy's inequality , we have

    \(a+b\ge2\sqrt{ab}\)

    Equation occur <=> a = b 

    Dao Trong Luan selected this answer.
  • ...
    Fc Alan Walker 18/05/2018 at 13:36

    You have to have a condition : a,b>0

    a) (a+b)2≥4ab

    <=> a2+2ab+b2≥4ab

    <=>  a2−2ab+b2≥0

    <=>  (a−b)2≥0

      (It's true)

    => (a+b)2≥4ab

    b) Applying Cauchy's inequality , we have

    a+b≥2ab−−√

    Equation occur <=> a = b


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM