MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

13/05/2018 at 03:16
Answers
1
Follow

Prove that: \(3^{2n+3}+40n-27⋮64\left(\forall n\in N\right)\)




    List of answers
  • ...
    Kaya Renger Coordinator 13/05/2018 at 03:39

    +) With n = 1 then 

    \(3^{2n+3}+40n-27=256⋮64\)

    +) Suppose that \(\left(3^{2n+3}+40n-27\right)⋮64\)

    And we will prove \(\left(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27\right)⋮64\) , too 

    Also \(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27=3^{2n+3}.9+40n+40-27\)

                                                             \(=3^{2n+3}.9+9.40n-27.9-8.40n+27.8+40\)

                                                             \(=9\left(3^{2n+3}+40n-27\right)-320n+256\)

                                                             \(=9\left(....\right)-64\left(5n+4\right)⋮64\)

    So \(\left(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27\right)⋮64\)  is true 

    Conclude \(\left(3^{2n+3}+40n-27\right)⋮64\)        \(\forall n\in N\)

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM