Lê Quốc Trần Anh Coordinator
13/05/2018 at 03:16-
+) With n = 1 then
\(3^{2n+3}+40n-27=256⋮64\)
+) Suppose that \(\left(3^{2n+3}+40n-27\right)⋮64\)
And we will prove \(\left(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27\right)⋮64\) , too
Also \(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27=3^{2n+3}.9+40n+40-27\)
\(=3^{2n+3}.9+9.40n-27.9-8.40n+27.8+40\)
\(=9\left(3^{2n+3}+40n-27\right)-320n+256\)
\(=9\left(....\right)-64\left(5n+4\right)⋮64\)
So \(\left(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27\right)⋮64\) is true
Conclude \(\left(3^{2n+3}+40n-27\right)⋮64\) \(\forall n\in N\)
Lê Quốc Trần Anh selected this answer.