MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

14/05/2018 at 14:04
Answers
1
Follow

Prove that: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)




    List of answers
  • ...
    Kaya Renger Coordinator 14/05/2018 at 15:14

    \(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}\)

    <=> \(4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)

    <=> \(4\left(a^2+b^2\right)\ge2\left(a^2+2ab+b^2\right)\)

    <=>  \(\left(2a^2+2b^2-4ab\right)\ge0\)

    <=> \(2\left(a-b\right)^2\ge0\)   (Right)

    So .... 

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM