With x,y,z \(\in R^+\) that satisfies \(x\ge z\). Show that: \(\dfrac{xz}{y^2+yz}+\dfrac{yz}{xz+yz}+\dfrac{x+2z}{x+z}\ge\dfrac{5}{2}\)
With x,y,z \(\in R^+\) that satisfies \(x\ge z\).
Show that: \(\dfrac{xz}{y^2+yz}+\dfrac{yz}{xz+yz}+\dfrac{x+2z}{x+z}\ge\dfrac{5}{2}\)