Quoc Tran Anh Le Coordinator
03/08/2018 at 02:40-
We denote that: \(A=x^2+x-24\)
<=> \(4A=4x^2+4x-96\)
<=> \(4A=\left(2x+1\right)^2-97\)
<=> \(4A=\left(2x+1-\sqrt{97}\right)\left(2x+1+\sqrt{97}\right)\)
<=> \(A=\dfrac{\left(2x+1-\sqrt{97}\right)\left(2x+1+\sqrt{97}\right)}{4}\)
<=> \(A=\left(x+\dfrac{1}{2}-\dfrac{\sqrt{97}}{2}\right)\left(x+\dfrac{1}{2}+\dfrac{\sqrt{97}}{2}\right)\)
Quoc Tran Anh Le selected this answer.