MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

18/05/2018 at 12:41
Answers
3
Follow

Prove that: \(a^4+b^4+c^4+d^4\ge4abcd\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 18/05/2018 at 13:24

    Apply inequality Cauchy, we have:

    \(a+b\ge2\sqrt{ab}\)

    \(\Rightarrow\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}\\c^4+d^4\ge2\sqrt{c^4d^4}\end{matrix}\right.\)

    \(\Leftrightarrow a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\)

    But \(\left(ab\right)^2+\left(cd\right)^2\ge2\sqrt{\left(ab\right)^2\cdot\left(cd\right)^2}=2abcd\)

    \(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\cdot2abcd=4abcd\)

    Lê Quốc Trần Anh selected this answer.
  • ...
    Fc Alan Walker 18/05/2018 at 13:33

    Apply inequality Cauchy, we have:

    a+b≥2ab−−√

    ⇒{a4+b4≥2a4b4−−−−√c4+d4≥2c4d4−−−−√

    ⇔a4+b4+c4+d4≥2a2b2+2c2d2=2[(ab)2+(cd)2]

    But (ab)2+(cd)2≥2(ab)2⋅(cd)2−−−−−−−−−√=2abcd

    ⇔a4+b4+c4+d4≥2⋅2abcd=4abcd

  • ...
    Kaya Renger Coordinator 18/05/2018 at 14:28

    Applying Cauchy's inequality for 4 numbers , we have 

    \(a^4+b^4+c^4+d^4\ge4.\sqrt[4]{a^4.b^4.c^4.d^4}=4abcd\)

    Equation occur <=> a = b = c = d 


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM