i have a solution but it's ugly
If \(a=b=1\) and \(c=0\) then we get a value \(2+\frac{1}{\sqrt2}\)
We'll prove that it's a minimal value. Thus, we need to prove that
\(\sqrt{\dfrac{ab+bc+ca}{a^2+b^2}}+\sqrt{\dfrac{ab+bc+ca}{b^2+c^2}}+\sqrt{\dfrac{ab+bc+ca}{a^2+c^2}}\ge2+\dfrac{1}{\sqrt{2}}\)
WLOG \(c=\min\{a,b,c\}\). Hence:
\(\dfrac{ab+ac+bc}{a^2+b^2}-\dfrac{(a+c)(b+c)}{(a+c)^2+(b+c)^2}=\dfrac{c(a+b+2c)(2ab+ac+bc)}{a^2+b^2)((a+c)^2+(b+c)^2}\ge0\)
Similar\(\dfrac{ab+ac+bc}{a^2+c^2}-\dfrac{b+c}{a+c}=\dfrac{c(2ab+ac-c^2)}{(a+c)(a^2+c^2)}\ge0\)
And \(\dfrac{ab+ac+bc}{b^2+c^2}-\dfrac{a+c}{b+c}=\dfrac{c(2ab+bc-c^2)}{(b+c)(b^2+c^2)}\ge0\)
Let \(\dfrac{a+c}{b+c}=x^2;\dfrac{b+c}{a+c}=y^2\left(x,y>0\right)\)\(\Rightarrow xy=1\) and we have:
\(x+y+\dfrac{1}{\sqrt{x^2+y^2}}\ge2+\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow x+y-2\sqrt{xy}\ge\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{x^2+y^2}}\)
\(\Leftrightarrow(\sqrt{x}-\sqrt{y})^2\ge\dfrac{(x-y)^2}{\sqrt{2(x^2+y^2)}(\sqrt{x^2+y^2}+\sqrt{2})}\)
\(\Leftrightarrow\sqrt{2(x^2+y^2)}(\sqrt{x^2+y^2}+\sqrt{2})\ge(\sqrt{x}+\sqrt{y})^2\)
By Cauchy-Schwarz's ine we have:
\(\sqrt{2(x^2+y^2)}=\sqrt{(1^2+1^2)(x^2+y^2)}\ge x+y\)
\(=\dfrac{1}{2}(1^2+1^2)((\sqrt{x})^2+(\sqrt{y})^2)\ge\dfrac{1}{2}(\sqrt{x}+\sqrt{y})^2\)
Thus, it's enough to prove that \(\sqrt{x^2+y^2}+\sqrt{2}\ge2\)
It's true by AM-GM \(\sqrt{x^2+y^2}+\sqrt{2}\ge\sqrt{2xy}+\sqrt{2}=2\sqrt{2}>2\)