MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

01/01/2018 at 16:00
Answers
4
Follow

Find all integer value of a,b,c satisfy \(a^2+b^2+c^2=a^2.b^2\)




    List of answers
  • ...
    Lightning Farron 01/01/2018 at 20:22

    if right-handed-sign is \(a^2b^2c^2\), you can assume it.

    Kaya Renger selected this answer.
  • ...
    FA Liên Quân Garena 02/01/2018 at 12:27

    Because the role of three numbers a,b,c is the same so suppose c≤b≤a

    With [a=0b=0

     then a=b=c=0

    (satisfy)

    With a,b≠

    0 we have:a2b2≤3a2⇒b2≤3⇒b∈{−1,1}

    With b=-1 then a2+1+c2=a2⇒c2+1=0

    (unsatisfactory)

    With b=1 then a2+1+c2=a2⇒c2+1=0

    (unsatisfactory)

    Conclude:Only have a=b=c=0 satisfy the problem

  • ...
    Kaya Renger Coordinator 02/01/2018 at 12:55

    +) With a = b = c = 0 (satisfy)

    +) Consider a,b,c \(\ne\) 0 

         -) With a,b,c are three odd numbers

    => (a2 + b2 + c2) / 8 (balance 3) 

          (Because with x is an odd number , square of x divided for 8 will balance 1, we can prove it if we use formula of odd numbers)

    By the way , at right hand side (a2.b2) / 8 (balance 1) 

    It's contradictory

    So with a,b,c are three odd numbers (removed) 

         -) With a,b,c are three even numbers 

    => We decided \(\left\{{}\begin{matrix}a^2=2^n.x\\b^2=2^m.y\\c^2=2^p.z\end{matrix}\right.\)

    => \(a^2b^2\equiv0\) (mod 2m + n)  <=>   \(a^2b^2⋮2^{m+n}\)

    But the left hand side is not 

    So with a,b,c are three even numbers (removed)

        -) With a, b, c is not the same kind , we have this table 

      a     b     c  
    odd even odd
    even odd odd

    Change the kind of three , it's not satisfy 

    So a = b = c = 0 

  • ...
    Alone 01/01/2018 at 16:44

    Because the role of three numbers a,b,c is the same so suppose \(c\le b\le a\)

    With \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\) then \(a=b=c=0\)(satisfy)

    With a,b\(\ne\)0 we have:\(a^2b^2\le3a^2\Rightarrow b^2\le3\)\(\Rightarrow b\in\left\{-1,1\right\}\)

    With b=-1 then \(a^2+1+c^2=a^2\Rightarrow c^2+1=0\)(unsatisfactory)

    With b=1 then \(a^2+1+c^2=a^2\Rightarrow c^2+1=0\)(unsatisfactory)

    Conclude:Only have a=b=c=0 satisfy the problem


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM