Phan Thanh Tinh Coordinator
17/08/2017 at 16:52-
AL 17/08/2017 at 17:15
Use Cauchy-Schwarz's inequality we have:
\(L.H.S=\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\)
\(=\dfrac{1}{\dfrac{a+b}{ab}}+\dfrac{1}{\dfrac{b+c}{bc}}+\dfrac{1}{\dfrac{c+a}{ca}}\)
\(=\dfrac{ab}{a+b}+\dfrac{ac}{a+c}+\dfrac{bc}{b+c}\)
\(=a+b+c-\left(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\right)\)
\(\le a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
\(=a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}=R.H.S\)
When \(a=b=c\)
Selected by MathYouLike -
:( another way
We going to prove this inequality : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
<=> \(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
<=> \(\left(a+b\right)^2\ge4ab\)
<=> \(a^2+2ab+b^2\ge4ab\)
<=> \(a^2-2ab+b^2\ge0\)
<=> \(\left(a-b\right)^2\ge0\) (it's true)
So that :
\(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{1}{\dfrac{4}{a+b}}+\dfrac{1}{\dfrac{4}{b+c}}+\dfrac{1}{\dfrac{4}{c+a}}\)
\(..............\le\dfrac{a+b}{4}+\dfrac{b+c}{4}+\dfrac{c+a}{4}=\dfrac{2\left(a+b+c\right)}{4}=\dfrac{a+b+c}{2}\)
When a = b = c
Phan Thanh Tinh selected this answer.