MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Phan Thanh Tinh Coordinator

17/08/2017 at 16:52
Answers
2
Follow

Prove that \(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{c}}\le\dfrac{a+b+c}{2}\left(a,b,c>0\right)\)


Inequality


    List of answers
  • ...
    AL 17/08/2017 at 17:15

    Use Cauchy-Schwarz's inequality we have:

    \(L.H.S=\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\)

    \(=\dfrac{1}{\dfrac{a+b}{ab}}+\dfrac{1}{\dfrac{b+c}{bc}}+\dfrac{1}{\dfrac{c+a}{ca}}\)

    \(=\dfrac{ab}{a+b}+\dfrac{ac}{a+c}+\dfrac{bc}{b+c}\)

    \(=a+b+c-\left(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\right)\)

    \(\le a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

    \(=a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}=R.H.S\)

    When \(a=b=c\)

    Selected by MathYouLike
  • ...
    Kaya Renger Coordinator 17/08/2017 at 17:24

    :( another way 

    We going to prove this inequality : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

    <=> \(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

    <=> \(\left(a+b\right)^2\ge4ab\)

    <=> \(a^2+2ab+b^2\ge4ab\)

    <=> \(a^2-2ab+b^2\ge0\) 

    <=> \(\left(a-b\right)^2\ge0\) (it's true)

    So that : 

    \(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{1}{\dfrac{4}{a+b}}+\dfrac{1}{\dfrac{4}{b+c}}+\dfrac{1}{\dfrac{4}{c+a}}\)

    \(..............\le\dfrac{a+b}{4}+\dfrac{b+c}{4}+\dfrac{c+a}{4}=\dfrac{2\left(a+b+c\right)}{4}=\dfrac{a+b+c}{2}\)

    When a = b = c 

    Phan Thanh Tinh selected this answer.

Post your answer

Please help Phan Thanh Tinh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM