Nguyễn Hưng Phát
27/11/2017 at 14:37-
Alchemy 27/11/2017 at 19:32
By Cauchy-Schwarz's inequality:
\(L.H.S=\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}\)
\(=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}\)
\(\ge\dfrac{a^2+b^2+c^2}{2}=\dfrac{1}{2}=R.H.S\)
DONE!
Nguyễn Hưng Phát selected this answer. -
Nguyễn Hiền 29/11/2017 at 08:40
L . H . S = a 3 b + c+ b 3 c + a+ c 3 a + bL.H.S=a3b+c+b3c+a+c3a+b
= a 4 a b + a c+ b 4 b c + a b+ c 4 a c + b c=a4ab+ac+b4bc+ab+c4ac+bc
≥ ( a 2 + b 2 + c 2 ) 2 2 ( a b + b c + c a )≥ ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) 2 ( a b + b c + c a )≥(a2+b2+c2)22(ab+bc+ca)≥(a2+b2+c2)(ab+bc+ca)2(ab+bc+ca)
≥ a 2 + b 2 + c 2 2= 1 2= R . H . S
-
KEITA FC 8C 28/11/2017 at 21:34
By Cauchy-Schwarz's inequality:
L.H.S=a3b+c+b3c+a+c3a+bL.H.S=a3b+c+b3c+a+c3a+b
=a4ab+ac+b4bc+ab+c4ac+bc=a4ab+ac+b4bc+ab+c4ac+bc
≥(a2+b2+c2)22(ab+bc+ca)≥(a2+b2+c2)(ab+bc+ca)2(ab+bc+ca)≥(a2+b2+c2)22(ab+bc+ca)≥(a2+b2+c2)(ab+bc+ca)2(ab+bc+ca)
≥a2+b2+c22=12=R.H.S