MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kayasari Ryuunosuke Coordinator

05/08/2017 at 15:27
Answers
5
Follow

Prove that : With a,b,c,d are positive real number so that :

\(\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge\left(a+b\right)\left(c+d\right)\)




    List of answers
  • ...
    AL 05/08/2017 at 21:58

    \(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\) wrong too

  • ...
    Phan Thanh Tinh Coordinator 05/08/2017 at 19:53

    Applying the Cauchy-Schwarz inequality,we have :

    \(\left(a^2+c^2\right)\left(b^2+d^2\right)\ge\left(ad+bc\right)^2\)

    \(\Rightarrow\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\ge ad+bc\)

    \(\left(a^2+d^2\right)\left(b^2+c^2\right)\ge\left(ac+bd\right)^2\)

    \(\Rightarrow\sqrt{\left(a^2+d^2\right)\left(b^2+c^2\right)}\ge ac+bd\)

    \(\Rightarrow\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+c^2\right)}\ge ad+bc+ac+bd\)

    \(=a\left(c+d\right)+b\left(c+d\right)=\left(a+b\right)\left(c+d\right)\)

    The equality happens only when ab = cd

  • ...
    Kayasari Ryuunosuke Coordinator 06/08/2017 at 08:26

    @AL No.....It's true ! :v 

  • ...
    Kayasari Ryuunosuke Coordinator 05/08/2017 at 19:56

    Ohhh.....i'm sorry about that @AL :)

    Change to : \(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\)

  • ...
    AL 05/08/2017 at 18:45

    \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\) - it's wrong


Post your answer

Please help Kayasari Ryuunosuke to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM