Kayasari Ryuunosuke Coordinator
05/08/2017 at 15:27-
AL 05/08/2017 at 21:58
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\) wrong too
-
Applying the Cauchy-Schwarz inequality,we have :
\(\left(a^2+c^2\right)\left(b^2+d^2\right)\ge\left(ad+bc\right)^2\)
\(\Rightarrow\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\ge ad+bc\)
\(\left(a^2+d^2\right)\left(b^2+c^2\right)\ge\left(ac+bd\right)^2\)
\(\Rightarrow\sqrt{\left(a^2+d^2\right)\left(b^2+c^2\right)}\ge ac+bd\)
\(\Rightarrow\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+c^2\right)}\ge ad+bc+ac+bd\)
\(=a\left(c+d\right)+b\left(c+d\right)=\left(a+b\right)\left(c+d\right)\)
The equality happens only when ab = cd
-
@AL No.....It's true ! :v
-
Ohhh.....i'm sorry about that @AL :)
Change to : \(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\)
-
AL 05/08/2017 at 18:45
\(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\) - it's wrong