MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

04/08/2017 at 10:07
Answers
1
Follow

Find the smallest value of \(x+y+z\) where \(x,y\) and z are diferent positive intergers that satisty this equation \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{7}{10}\).




    List of answers
  • ...
    AL 04/08/2017 at 18:37

    WLOG \(x\le y \le z\) we have:

    \(\dfrac{7}{10}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}=\dfrac{3}{z}\)

    \(\Rightarrow\dfrac{7}{10}\ge\dfrac{3}{z}\Rightarrow z\ge\dfrac{30}{7}\approx4,28\)

    Because \(z\) is positive integer id est \(z\ge 5\)

    Because \(x+y+z\) is smallest value should find \(z\) is smallest value

    \(\Rightarrow z=5\Rightarrow x=3;y=6\) (wrong because \(x\le y \le z\))

    \(\Rightarrow z=6\Rightarrow y=5\Rightarrow x=3\) (right because \(x\le y \le z\))

    We only find 1 smallest value satisfy, should \(z=7;z=8;... \) wrong

    Hence \(x+y+z=3+5+6=14\)

    Selected by MathYouLike

Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM