MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan Coordinator

03/12/2017 at 10:04
Answers
2
Follow

Given x,y,z are positive numbers.

Prove that:

\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\le\dfrac{3}{4}\)

 




    List of answers
  • ...
    Alchemy 03/12/2017 at 10:43

    By Cauchy-Schwarz's inequality we have:

    \(VT=\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\)

    \(=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(y+z\right)}\)

    \(\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{x+y}\right)+\dfrac{1}{4}\left(\dfrac{z}{x+z}+\dfrac{z}{z+y}\right)\)

    \(=\dfrac{1}{4}\left(\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}\right)=\dfrac{3}{4}\)

    When \(x=y=z\)

    Dao Trong Luan selected this answer.
  • ...
    Dao Trong Luan Coordinator 03/12/2017 at 12:01

    I never have studied inequality Co-si yet. So can you give me different cases? 

    P/s: I am grade 7 bucminh


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM