MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 123 )
  • Give a,b,c,d are positive integer numbers so that \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

    Prove that :

    abcd is the square number 

  • Find x know :

    |x - 1| + |2x - 4| = 3

  • With a,b,c are positive real numbers so that a + b + c = 1 .

    Find MaxS know :

    \(S=6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)

  • Polynomial analysis into factor multiplication :

    x - x2 + x3 - x4 

     

  • Give x + y = 1. 

    Find smallest value of F know :

    F = x2 + y2 + xy 

  • For triangle ABC (AB <AC). Let d be the centroid of BC. Draw D symmetric to A through d. Call O is the intersection of d with AC.

    Prove that : d is the symmetry axis of the quadrilateral ABCD

  • Find x if :

    a) \(\left(x-1\right)\left(3-x\right)>0\)

    b) xy = x + y 

  • Give a,b,c,d are real numbers and abcd = 1

    Prove that : \(a^3+b^3+c^3+d^3\ge a+b+c+d\)

  • Give a,b,c are positive real number and a2 + b2 + c2 = 3

    Find MaxP know :

    P = a + b + c - abc 

     

  • Give a,b,c \(\ge\) 0 

    Prove that : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

  • Prove Nesbitt inequality :

    Give a,b,c are positive real numbers , then , we have :

    \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)

    P/s : Use AM - GM inequality

  • Prove that : 

    \(2^{2x+1}+3^{2x+1}⋮5\)

    \(\forall x\in N\)

  • Compact :

    A = 5 + 53 + 55 + ....... + 52015 + 52017    

     

  • Give \(\Delta ABC\) with AM is the median line .

    Prove that : \(AM\le\dfrac{AB+AC}{2}\)

  • Give a,b,c > 0

    Prove that : \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)

  • Give a,b,c > 0 and abc = 1 .

    Prove that :  \(\Sigma\dfrac{a\left(3a+1\right)}{\left(a+1\right)^2}\ge3\)

  • Give x,y > 0 , x2 + y2 = 1

    Prove that : \(P=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\ge4+3\sqrt{2}\)

    P/s : By inequality AM-GM 

  • Give x,y,z,a,b,c are positive real number .

    Prove that : \(\dfrac{x^2+1}{yz+b}+\dfrac{y^2+b}{xz+c}+\dfrac{z^2+c}{xy+a}\ge3\)

  • Prove this :

    For every natural number (n) greater than 4, fraction 4 / n is equal to the sum of 3 different Egyptian fractions.

  • Give \(\Delta ABC\) have \(\widehat{ABC}=30^0\) and \(\widehat{BAC}=130^0\). Call Ax is the opposite ray of AB , the bisectrix of \(\widehat{ABC}\)cut bisectrix of \(\widehat{CAx}\)at D, Ray BA cut CD at E. Compare the long of AC and CE

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM