MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 123 )
  • Given quadrilateral ABCD , \(\widehat{A}=\widehat{B}=90^0\) , \(\widehat{C}=2\widehat{D}\)

    a) Calculate : \(\widehat{C}\) and \(\widehat{D}\)

    b) If AC = 2BC. Prove that \(\Delta ACD\) is the equilateral triangle .

     

     

  • This is an ancient Mathematic problem , perhaps some people already knew this :

    Prove that : For every natural number n> 4, fraction \(\dfrac{4}{n}\) equals 3 fractions have a numerator of 1 .

     

  • Solve the equation :

    -a2b - ab2 - a2x - b2x + ax2 + bx2 = 0 

     

  • Given \(x=\dfrac{b^2+c^2-a^2}{2bc}\) ; \(y=\dfrac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

    Calculator : \(P=x+y+xy\)

  • Given acute triangle ABC and AA' ; BB' ; CC' perpendicular at BC ; AC ; AB 

    Which triangle ABC could be to \(\dfrac{\left(AB+BC+CA\right)^2}{AA'+BB'+CC'}\) reach the smallest value.

  • Given \(x\ne y\ne z\) and \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

    Calculator A know :

    A = \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)

  • Prove that with n is a positive number : \(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \dfrac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)

  • Given a,b,c are positive real numbers so that abc = 1

    Prove that : \(\dfrac{b+c}{\sqrt{a}}+\dfrac{c+a}{\sqrt{b}}+\dfrac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

    Good luck :) 

  • Given two positive real numbers x,y so that \(x+y\ge10\) 

    Find the smallest value of P , know P = \(2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)

  • Prove that with all values of x,y 

    So that : Value of A = 4x(x + y)(x + y + z)(x + z) + y2z2 is non-negative

  • Prove that :) with n \(\in\) Z , so that :

    n2.(n4 - 1) \(⋮\) 60 

  • Perfect :v 

    ***/ Give a,b,c > 0

    Prove that : \(\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{\left(a+b\right)\left(a+b+2c\right)}{\left(3a+3b+2c\right)^2}\le\dfrac{1}{8}\)

    Source : Câu hỏi của Hoàng Phúc - Toán lớp 9 - Học toán với OnlineMath

  • Prove that : With a,b,c,d are positive real number so that :

    \(\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge\left(a+b\right)\left(c+d\right)\)

  • Give a + b + c + d = 0.
    Be write : a2 + b2 + c2 + d2 by total of three cube.

  • Given triangle ABC isosceles square at C, M is a point anywhere on AB. Draw MR \(\perp\) AC. MS \(\perp\) BC

    a) Prove that: CM and RS intersect at the midpoint each way

    b) Call O is the midpoint of AB , which triangle ORS is ? Why ?

  • Given triangle ABC isosceles square at B. From D of AB , draw DE \(\perp\) AC at E, ED ray cut CB at F. Call M,N,P,Q are midpoints of AD , DF , FC , CA.

    Prove that : MNPQ is the square 

  • ( IMO . Shorlist 1990 )

    Supports a,b,c,d are non-negetive numbers so that ab + bc + cd + da = 1

    Prove that : \(\dfrac{a^3}{b+c+d}+\dfrac{b^3}{a+c+d}+\dfrac{c^3}{a+b+d}+\dfrac{d^3}{a+b+c}\ge\dfrac{1}{3}\)

  • Give x + y = 3 and x2 + y2 = 5 .

    Calculate : x3 + y3

     

  • 2. Prove that , with erery real numbers x,y so that expressions are square numbers :

    a) A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4

    b) B = x(x + 1)(x + 2)(x + 3) + 1 

    c) C = 4x(x + y)(x + y + z)(x + z) + y2z2

  • 1. Find the smallest value of these expressions :

    A = x2 + 3x + 7

    B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

     

     

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM