MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 123 )
  • Find pairs of integers (x,y) so that x2 + 102 = y2

  • Find the residual polynomial of division :

    (x105 + x90 + x75 + ..... + x15 + 1) : (x2 - 1)

  • Solve the equation :

    (x + 3)4 - (x - 3)4 - 24x3 = 108 

  • Compact : 

    P = 12(52 + 1)(54 + 1)(58 + 1)(516 + 1)

     

  • Given x,y satisfy:  x2 + 2xy + 6x + 6y + 2y2 + 8 = 0 

    Find minimum and maximum value of B = x + y + 2016 

  • Polynomial analysis into multiplication

    a) x4 + 4

    b) 4x4 + 81 

    c) 4x4 - 9x2 + 81 

  • Polynomial analysis into multiplication

    a) x5 + x4 + 1

    b) x8 + x4 + 1

  • Given rhombus ABCD , know AB = BC = CD = DA = 4 (centimeter) and 1 of 4 angles , there is a angle that it equals to 30 degrees 

    Find the area of ABCD 

  • Given Parallelogram ABCD. M,N are midpoints of AB,CD. Call E is the intersection of AN and DM , F is the intersection of BN and CM

    Show that :

    a) \(S_{\Delta MCD}=\dfrac{1}{2}.S_{ABCD}\)

    b) \(S_{\Delta MCD}=S_{\Delta NAB}\)

    c) \(S_{\Delta EDN}+S_{\Delta FCN}=S_{\Delta EAM}+S_{\Delta FBM}\)

  • Given Parallelogram ABCD, O is the intersection of AC and BD .

    Show that :

    a) \(S_{\Delta ABD}=S_{\Delta ABC}=S_{\Delta ACD}=S_{\Delta BCD}\)

    b) \(S_{\Delta OAD}=S_{\Delta OBC}=S_{\Delta OCD}=S_{\Delta OAB}\)

  • Given a,b are positive number satisfy a + b \(\le\) 1

    Find minimum value of S know :

    S = ab + \(\dfrac{1}{ab}\)

  • Given x,y satisfy 16x2 - 9y2 \(\ge\) 144 .

    Show that : |2x - y + 1| \(\ge\) \(2\sqrt{5}-1\)

  • Given quadrilateral ABCD , E is the midpoint of BD

    a) Show the ratio of : \(\dfrac{S_{ABE}}{S_{ADE}};\dfrac{S_{ABE}}{S_{ABD}}\)

    b) Show that : \(S_{ABCE}=\dfrac{1}{2}.S_{ABCD}\)

  • Can or can't if a triangle be divided into 5 equal triangles ?

  • Prove that :

    a) If n is the sum of two square numbers so that 2n is the sum of two square numbers too.

    b) If 2n is the sum of two square numbers so that n is the sum of two square numbers too. 

  • Prove that :

    a) a2 + 2(a + 1)2 + 3(a + 2)2 + 4(a + 3)2 = (a + 5)2 + (3a + 5)2

    b) (a + b)(a - b) + (b + c)(b - c) = (a + c)(a - c)

    c) (ax + by)2 + (ay - bx)2 = (a2 + b2)(x2 + y2)

     

  • Given a,b,c,d are positive real numbers , find minimum value of :

    \(M=\dfrac{a-d}{d+b}+\dfrac{d-b}{b+c}+\dfrac{b-c}{c+a}+\dfrac{c-a}{a+d}\)

    Source : Câu hỏi của Lê Văn Hoàng - Toán lớp 9 - Học toán với OnlineMath

  • Given a,b,c,d > 0 , Find the smallest value of A know :

    A = \(\dfrac{a}{b+c+d}+\dfrac{b}{c+d+a}+\dfrac{c}{a+b+d}+\dfrac{d}{a+b+c}+\dfrac{b+c+d}{a}+\dfrac{c+d+a}{b}+\dfrac{a+b+d}{c}+\dfrac{a+b+c}{d}\)

  • 2/ Find the value of these equations :

    A = 3xy(4x2 - y2) + 4xy(y2 - 3x2)

    B = x10 - 10x9 + 10x8 - 10x7 + ......... - 10x + 10 with x = 9 

  • 1/ Compact : 

    A = -2(3x - 2y) - 5(2y - 3x)

    b) (4x2 - 3y)2y - (3x2 - 4y)3y

     

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM