MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 123 )
  • Given a,b,c,d satisfy a + b = c + d , a2 + b2 = c2 + d2 .

    Show that : a2018 + b2018 = c2018 + d2018

  • Given 2 straight lines AB and CD

    Show that : If  \(AB\perp CD\) then AC2 - AD2 = BC2 - BD2

  • undefined

  • Find m,n are positive integer satisfy $m^6=n^{n+1}+n-1$

  • Given square ABCD (AB = BC = CD = DA = a) . E is a point on AD ( E \(\ne\) A). Bisector of \(\angle EBA,\angle EBC\) cut DA,DA at M,N

    a) Show that : \(BE\perp MN\)

    b) Where does point E on AD for value of SDMN maximum?

  • Show that :

    \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+....+\dfrac{1}{2009^3}< \dfrac{1}{4}\)

  • Solve this disequation :

     \(\dfrac{x-2}{4}-\dfrac{2}{3}>\dfrac{5x-9}{12}\)

  • Given isosceles trapezoid ABCD, BD is the large bottom, O is the intersection of 2 diagonal line, \(\angle BOC=60^0\) . Call I,M,N,P,Q in order is midpoint of BC,OA,OB,AB,CD. Prove that :

    a) \(DM\perp AC\)

    b) \(\Delta MNP\) is an equilateral triangle

    c) \(\angle MQP=\angle QND=\angle NMC\)

    d) Prove that : Intersection H of 3 height in triangle MNQ and 2 point I,O are on a line .

     

  • An triangle has height and median divide the angle at the top into 3 equal angles. Calculate all angle of that triangle .

  • Given quadrilateral ABCD has \(\angle B+\angle C=180^0\) and BC = CD . Prove that AC is the bisector of \(\angle A\).

    P/s : Solve by 2 ways

  • Prove that : 4n + 15n - 10 \(⋮\) 9 , \(n\in N\)

  • Prove that with n is natural number that :

    a) a2 - a \(⋮\) 2    ;    a3 - a \(⋮\) 3     ;     a4 - a \(⋮\) 4

    b)  a3 - a \(⋮\) 6    ;    a3 - 7a \(⋮\)  6    ;    a3 + 11a \(⋮\)  6

     

  • With x + y + z = 0

    Show that : x3 + x2z + y2z - xyz + y3 = 0

  • Given expression B = (x2 + 1)(y2 + 1) - (x + 4)(x - 4) - (y - 5)(y + 5) 

    Prove that : B \(\ge\) 42 \(\forall x,y\)  . Which value of x,y that B = 42 .

  • Given x,y \(\in\) Z . Show that :

    a) If A = 5x + y \(⋮\) 19 then B = 4x - 3y \(⋮\) 19

    b) C = 4x + 3y \(⋮\) 13 then D = 7x + 2y \(⋮\) 13 

  • Given a + b + c = 2009

    Show that : \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}=2009\)

  • Can or not if three needles of the clock is located on a straight line . 

  • Calculate A know :

    \(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)....\left(29^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right).....\left(30^4+\dfrac{1}{4}\right)}\)

  • Given right isosceles triangle ABC at A. On AB,AC take D,E so that AD = AE. Line through D \(\perp BE\) and cut BC at I , Line through A \(\perp BE\) cut BC at K. Call M is the intersection of AK and CD.

    a) Show that : \(\Delta ABE=\Delta ACD\)

    b) \(\Delta MAC\) isosceles

    c) M is the midpoint of CD , K is the midpoint of  IC

    d) Call G is the intersection of DK and IM , MK cut GC at F.

    Show that : FM = FK

  • By denote t = x - 3

    Solve that equation : (x - 1)3 + (x - 4)3 = 8

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM