MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    We denote that: \(A=x^2+x-24\)

    <=> \(4A=4x^2+4x-96\)

    <=> \(4A=\left(2x+1\right)^2-97\)

    <=> \(4A=\left(2x+1-\sqrt{97}\right)\left(2x+1+\sqrt{97}\right)\)

    <=> \(A=\dfrac{\left(2x+1-\sqrt{97}\right)\left(2x+1+\sqrt{97}\right)}{4}\)

    <=> \(A=\left(x+\dfrac{1}{2}-\dfrac{\sqrt{97}}{2}\right)\left(x+\dfrac{1}{2}+\dfrac{\sqrt{97}}{2}\right)\)

  • See question detail

    @8#3@ = (8 + 8) x (6 - 3) = 16 x 3 = 48

  • See question detail

    We have : \(2^{18}=262144=262121+23\)

    Total time we can calculate since John was born until he was married is : 

    \(S=2^{18}\left(h\right)+1\left(h\right)=262144\left(h\right)+1\left(h\right)=262128\left(h\right)+17\left(h\right)\)  

        \(=10920\left(days\right)+17\left(h\right)=10922\left(days\right)+2\left(days\right)+17\left(h\right)\)

        \(=1560\left(weeks\right)+2\left(days\right)+17\left(h\right)\)

    Because after a week , the day that Fransisco was born was unchange so it still on Tuesday 

    After Tuesday 2 days is Thurday 

    So , exactly the day that Francisco was married is at 17:00 on Thursday 

  • See question detail

    \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{3}\right)^3\)

    <=> \(8.\dfrac{a^3+b^3}{2}\ge a^3+3a^2b+3ab^2+b^3\)

    <=> \(3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)

    <=> \(a^3+b^3-a^2b-ab^3\ge0\)

    <=> \(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

    <=> \(\left(a+b\right)\left(a-b\right)^2\ge0\)  (Right)

    So ...... 

  • See question detail

    Applying Cauchy's inequality for 4 numbers , we have 

    \(a^4+b^4+c^4+d^4\ge4.\sqrt[4]{a^4.b^4.c^4.d^4}=4abcd\)

    Equation occur <=> a = b = c = d 

  • See question detail

    Applying Cauchy's inequality , we have 

    \(\left(a^4+1\right)+\left(b^4+1\right)\ge2a^2+2b^2=2\left(a^2+b^2\right)\ge2.2ab=4ab\)

    Equation occur <=> a = b = \(\pm1\)

  • See question detail

    \(a^4+b^4\ge a^3b+ab^3\)

    <=> \(a^4+b^4-a^3b-ab^3\ge0\)

    <=> \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

    <=> \(\left(a^3-b^3\right)\left(a-b\right)\ge0\)

    <=> \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

    Cause \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\in R\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)

    So ...... 

  • See question detail

    You have to have a condition : \(a,b>0\)

    a) \(\left(a+b\right)^2\ge4ab\)

    <=> \(a^2+2ab+b^2\ge4ab\)

    <=>  \(a^2-2ab+b^2\ge0\)

    <=>  \(\left(a-b\right)^2\ge0\)  (It's true)

    => \(\left(a+b\right)^2\ge4ab\)

    b) Applying Cauchy's inequality , we have

    \(a+b\ge2\sqrt{ab}\)

    Equation occur <=> a = b 

  • See question detail

    We have 

    \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{b}{c}\Leftrightarrow\dfrac{10a+b}{10b+c}=\dfrac{b}{c}=\dfrac{10a+b-b}{10b+c-c}=\dfrac{10a}{10b}=\dfrac{a}{b}\)

    => \(\dfrac{a}{b}=\dfrac{b}{c}\)

  • See question detail

    1st way : We have

    \(\sqrt{8}^2=8=6+2\)

    \(\left(\sqrt{5}+1\right)^2=5+2\sqrt{5}+1=6+2\sqrt{5}\)

    Cause \(2\sqrt{5}\ge2\sqrt{4}=4>2\)

    So \(\sqrt{8}< \sqrt{5}+1\)

    2st way :

    \(\sqrt{8}< \sqrt{9}=3=2+1=\sqrt{4}+1< \sqrt{5}+1\)

    So ...... 

  • See question detail

    \(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}\)

    <=> \(4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)

    <=> \(4\left(a^2+b^2\right)\ge2\left(a^2+2ab+b^2\right)\)

    <=>  \(\left(2a^2+2b^2-4ab\right)\ge0\)

    <=> \(2\left(a-b\right)^2\ge0\)   (Right)

    So .... 

  • See question detail

    \(\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}=\dfrac{ac}{2+ac+2c}+\dfrac{ac.b}{abc.c+abc+ac}+\dfrac{2c}{ac+2c+2}\)

                                                                              \(=\dfrac{ac}{2+ac+2c}+\dfrac{2}{2c+2+ac}+\dfrac{2c}{ac+2c+2}=1\)

  • See question detail

    +) With n = 1 then 

    \(3^{2n+3}+40n-27=256⋮64\)

    +) Suppose that \(\left(3^{2n+3}+40n-27\right)⋮64\)

    And we will prove \(\left(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27\right)⋮64\) , too 

    Also \(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27=3^{2n+3}.9+40n+40-27\)

                                                             \(=3^{2n+3}.9+9.40n-27.9-8.40n+27.8+40\)

                                                             \(=9\left(3^{2n+3}+40n-27\right)-320n+256\)

                                                             \(=9\left(....\right)-64\left(5n+4\right)⋮64\)

    So \(\left(3^{2\left(n+1\right)+3}+40\left(n+1\right)-27\right)⋮64\)  is true 

    Conclude \(\left(3^{2n+3}+40n-27\right)⋮64\)        \(\forall n\in N\)

  • See question detail

    +) With n = 1 then 

    \(16^n-15n-1=16-15-1=0⋮225\)

    +) With n = 2 then 

    \(16^n-15n-1=16^2-15.2-1=225⋮225\)

    Suppose \(\left(16^n-15n-1\right)⋮225\)

    We are going to prove that \(\left(16^{n+1}-15\left(n+1\right)-1\right)⋮225\) too

    We can see \(16^{n+1}-15\left(n+1\right)-1=16.16^n-15n-15-1=\left(16^n-15n-1\right)+15.16^n-15\)

    Following Inductive hypothesis , \(\left(16^n-15n-1\right)⋮225\)

    And \(15.16^k-15=15\left(16^k-1\right)⋮15.15=225\)

    So \(\left(16^{n+1}-15\left(n+1\right)-1\right)⋮225\)

    Conclude \(\left(16^n-15n-1\right)⋮225\) \(\forall n\in N\)

  • See question detail

    \(34^2+66^2+68.66=\left(34^2+66^2+2.34.66\right)=\left(34+66\right)^2=100^2=10000\)

  • See question detail

    \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

    So .... 

  • See question detail

    Another way :

    Applying Cauchy's inequality , we have 

    \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{ab}{2\sqrt{ab}}+\dfrac{bc}{2\sqrt{bc}}+\dfrac{ca}{2\sqrt{ca}}=\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

    We have an extra inquality : With a,b,c are positive then \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

    Prove: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

    <=>  \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)  (Right) 

    So \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)  is true

    We have 

    \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\dfrac{1}{2}.\left(a+b+c\right)\)

    Equation occur <=> a = b = c 

  • See question detail

    a) With x = 2008 => \(A=2\cdot\left|2008-2007\right|+\left|2008-2009\right|=2+1=3\)

    b) Cause A = \(2\cdot\left|x-2007\right|+\left|x-2009\right|\)

    So for A = x - 2010

    <=> \(2\cdot\left|x-2007\right|+\left|x-2009\right|=x-2010\)   (*)

    +) With x < 2007 

    (*) <=> 2(2007 - x) + (2009 - x) = x - 2010 

         <=>  6023 - 3x = x - 2010

         <=>  6023 + 2010 = 4x

         <=>  x = \(\dfrac{8033}{4}>2007\)  (Removed) 

    +) With \(2007\le x\le2009\)

    (*) <=> \(2\cdot\left(x-2007\right)+\left(2009-x\right)=x-2010\)

         <=> \(x-2005=x-2010\) (impossible) 

    +) With \(x>2009\)

    (*)  <=> \(2\cdot\left(x-2007\right)+\left(x-2009\right)=x-2010\)

          <=>  \(3x-6023=x-2010\)

          <=> \(2x=4013\)

          <=>  \(2x=\dfrac{4013}{2}< 2009\)  (Removed)

    So , There isn't any roots of this equation 

    c) Applying this inequality 

    With a,b are two numbers , we have \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

    Equation occur <=> ab \(\ge\) 0

    So \(A=2\cdot\left|x-2007\right|+\left|x-2009\right|\)

             \(=\left|x-2007\right|+\left|2009-x\right|+\left|x-2007\right|\ge\left|x-2007+2009-x\right|+\left|x-2007\right|\)

                                                                                      \(=2+\left|x-2007\right|\ge2\)

    => Min(A) = 2 <=> \(\left\{{}\begin{matrix}x=2007\\\left(x-2007\right)\left(2009-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2007\\2007\le x\le2009\end{matrix}\right.\)

    So Min(A) = 2 <=> x = 2007 

  • See question detail

    Applying Cauchy's inequaility , we have 

    \(\dfrac{ab}{a+b}\le\dfrac{\dfrac{\left(a+b\right)^2}{4}}{a+b}=\dfrac{a+b}{4}\)

    \(\dfrac{bc}{b+c}\le\dfrac{\dfrac{\left(b+c\right)^2}{4}}{b+c}=\dfrac{b+c}{4}\)

    \(\dfrac{ca}{c+a}\le\dfrac{\dfrac{\left(c+a\right)^2}{4}}{c+a}=\dfrac{c+a}{4}\)

    So \(\sum\left(\dfrac{ab}{a+b}\right)\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{2\left(a+b+c\right)}{4}=\dfrac{1}{2}\left(a+b+c\right)\)

    Equation occur

    <=> a = b = c 

  • See question detail

    Cause \(a^4,b^4,c^4,d^4\) are square numbers 

    So when they divided for 3 , Their remainder must be 1 or 0

    <=> \(\left(a^4+b^4+c^4+d^4\right)\equiv1\left(mod3\right)\)

    or \(\left(a^4+b^4+c^4+d^4\right)\equiv0\left(mod3\right)\)

    But \(2018\equiv2\left(mod3\right)\)

    So there isn't any root of (a;b;c;d) that satisfy the equation

    It also means that we can't calculate the value of \(a^2+b^2+c^2+d^2\)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM