MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 123 )
  • Find Minimum value of :

    A = x2 + 8x + 1

    B = x2 - x + 1

  • Find Maximum value of :

    A = 2x - x2

    B = 19 - 6x - 9x2

  • Prove that :

    A = x2 - xy + y2 > 0 (\(\forall x,y\) ; \(A\ne0\))

     

  • Given rhombus ABCD , \(\widehat{C}=40^0\) , M is the midpoint of CD. Draw \(BH\perp AM\) at H .

    Find the degree of \(\widehat{DBC};\widehat{AHD}\)

  • Given x, y \(\ge0\) satisfy x3 + y3 = x - y

    Find maximum of A know A = x2 + y2

  • With a,b \(\in Z\) . Show that : If 4a2 + 3ab - 11b2 \(⋮5\) so that a4 - b4 \(⋮5\)

  • Given x = ax + by ; y = ax + cz ; z = by + cz    and    \(x+y+z\ne0\)

    Prove that : \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=2\)

  • Given triangle ABC right at A, AH is height . Draw \(HD\perp AB\) at D, \(HE\perp AC\) at E

    Prove that : AH2 = BH.HC

                        AB2 = BH.BC 

  • Given square ABCD. O is the intersection of AC and BD, M \(\in\) OB . Draw \(ME\perp AB\) at E , \(MF\perp BC\) at F.

    a) Which special quadrilateral that the quadrilateral BEMP does ? Why ?

    b) Prove that : AC // EF

  • Given triangle ABC Isosceles at A. On AB , choose D , through D draw a ray parallel with BC and cut AC at E.

    a) Where D is located on AB so that BD = DE = EC ?

     

  • Given abc = 1 

    Prove that : \(M=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+a}+\dfrac{c}{ca+c+1}=1\)

  • Given a,b,c > 0

    Prove that : \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\)

  • Solve the inequation :

    \(\dfrac{4x-3}{x-1}< 5\)

  • Solve the inequation :

    \(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+1}{2010}+\dfrac{x+11}{2000}\)

  • Solve the equation by using inequality :

    \(2.\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+x^{16}+y^{16}=4\left(1+x^2y^2\right)-10\)

  • Solve the equation : 

    x4 = 4x + 1 

  • Solve the equation :

    \(\dfrac{x}{\left(a-b\right)\left(a-c\right)}+\dfrac{x}{\left(b-a\right)\left(b-c\right)}+\dfrac{x}{\left(c-a\right)\left(c-b\right)}=2\) with \(a\ne b\ne c\)

  • Find the edges of polygons with the sum of angles equals to 1260

  • Each angles of equilateral polygon n edges equals 1440 . Find n

  • Given quadrilateral ABCD with \(\widehat{A}=70^0\) , two ray bisector inside of \(\widehat{B}\)  and \(\widehat{C}\) cut at I , two ray bisector outside of \(\widehat{B}\) and \(\widehat{C}\) cut at H.

    Prove that : All angles in quadrilteral BICH does not depend on magnitude of B and C.

     

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM