MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 123 )
  • With x,y,z \(\in R^+\) that satisfies \(x\ge z\). 

    Show that: \(\dfrac{xz}{y^2+yz}+\dfrac{yz}{xz+yz}+\dfrac{x+2z}{x+z}\ge\dfrac{5}{2}\)

  • With a,b,c are three non-negative numbers that satisfy a + b + c = 3

    Show that: \(\Sigma\left(a\sqrt{a+8}+2\right)\ge15\)

  • Let a,b,c > 0 that satify a + b + c = 1

    Find minimum value of  \(P=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}+\dfrac{1}{9abc}\)

  • Let a,b,c are positive real numbers satisfy \(a^2+b^2+c^2=1\)

    Show that : \(\Sigma\dfrac{a^3}{b+c}\ge\dfrac{1}{2}\)

  • Let P is an integer number , show that :

    \(GCD\left(P^2-1;P^2+1\right)\ne1\)

  • Give a2 + b2 = c2 + d2 = 2017 and ac + bd = 0 

    Calculate the value of A = ab + cd 

  • Find the triple pairs of integer (x;y;z) that satisfy: 

    \(2^x+2^y+2^z=2336\)

  • Give an equilateral hexagon. Six birds land on six tops. After a few minutes, six bird fly away and land on 6 tops again. (They don's have to land on the top that they have landed). Show that , there are exist at least three birds that the triangle they have made before fly equals to the triangle they have made after land.

  • Suppose p is an odd prime number and   \(m=\dfrac{9p-1}{8}\)

    Prove that : m is an odd integer not divisible by 3 and 

                          \(3^{m-1}\equiv1\)   (mod m)

  • With a,b,c are three lengths of three edges of a triangle.

    Show that : \(A=\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\)

  • Show that : with x,y are positive interger numbers then \(x⋮̸xy-1\)

  • Find all the pairs of real numbers (x;y;z) satisfy 

    \(x=\dfrac{4z^2}{1+4z^2}\)  ;  \(y=\dfrac{4x^2}{1+4x^2}\)  ;  \(z=\dfrac{4y^2}{1+4y^2}\)

  • Show that : The final digit of the numbers are in the form of n and n5 are in the same 

  • Show that :

    An odd number p = 10s + r (with r equals to 1 ; 3 ; 7 or 9) divisible by a natural number T = 10x + a when and only when (x - ka) \(⋮\) p , k is a number satisfy for 10k + 1 \(⋮\)  p .

  • Find all integer value of a,b,c satisfy \(a^2+b^2+c^2=a^2.b^2\)

  • Find value of (a;b;c) are integers so that  \(a^2+b^3=c^4\)     (Condition : \(a,b,c\ge0\))

  • Find all integer value of x,y know : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

  • How to determine a prime number ? Please help me :< ! 

  • Find x for A's value has maximum 

    A = \(\dfrac{x^2-2x+2016}{x^2}\)   (With x > 0) 

  • Given x,y are two positive real numbers (x,y differ to 0) satisfy \(5x^2+\dfrac{y^2}{4}+\dfrac{1}{4x^2}=\dfrac{5}{2}\)

    Find minimum and maximum value of expression \(A=2013-xy\) 

    Source : https://olm.vn/hoi-dap/question/1113825.html

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM