MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    Condition : \(x\ge0\)

    We have :

    \(P=\dfrac{x^2+2x+1}{x^2+1}=\dfrac{x^2+1}{x^2+1}+\dfrac{2x}{x^2+1}=1+\dfrac{2x}{x^2+1}\)

    We got this : 

    Following inequality Cauchy , we have :

    x2 + 1 \(\ge2\sqrt{x^2.1}=2x\)

    => \(\dfrac{2x}{x^2+1}\le\dfrac{2x}{2x}=1\)

    => \(1+\dfrac{2x}{x^2+1}\le2\)

    Hence : \(Max_P=2\)

    <=> \(\dfrac{2x}{x^2+1}=1\)

    <=> 2x = x2 + 1

    <=> (x - 1)2 = 0

    <=> x = 1

    So , the anwser is A

  • See question detail

    \(C=\dfrac{8-\dfrac{8}{5}+\dfrac{8}{25}-\dfrac{8}{125}}{9-\dfrac{9}{5}+\dfrac{9}{25}-\dfrac{9}{125}}:\dfrac{161616}{151515}\)

    \(C=\dfrac{8.\left(1-\dfrac{1}{5}+\dfrac{1}{25}-\dfrac{1}{125}\right)}{9.\left(1-\dfrac{1}{5}+\dfrac{1}{25}-\dfrac{1}{125}\right)}.\dfrac{15}{16}\)

    \(C=\dfrac{8}{9}.\dfrac{15}{16}=\dfrac{1.5}{1.2}=\dfrac{5}{2}\)

  • See question detail

    \(\dfrac{2^2.3^2.4^2.5^2}{28800}=\dfrac{\left(2.3.4.5\right)^2}{28800}=\dfrac{120^2}{2.14400}=\dfrac{120^2}{2.120^2}=\dfrac{1}{2}\)

  • See question detail

    Percentage of people have black hair is :

    \(100\%-12\%-25\%=63\%\)

    The number of people have black hair is :

    \(600.63\%=\dfrac{600.63}{100}=6.63=378\) (people)

  • See question detail

    P is a natural number 

    <=> 4n + 1 \(⋮\) 2n + 3

    <=> 4n + 6 - 6 + 1 \(⋮\) 2n + 3

    <=> 2(2n + 3) - 5 \(⋮\) 2n + 3

    <=> 5 \(⋮\) 2n + 3

    => 2n + 3 \(\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

    We have a table :

    2n + 3       1                  -1                 5            -5    
    n -1 -2 1 4

    Hence , n = {-1 ; -2 ; 1 ; 4}

    \(⋮\) 

  • See question detail

    We have :

    \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

    \(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

    .................

    \(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

    \(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{99.100}\)

    \(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\) (1)

    In another case , we have :

    \(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

    \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

    ................

    \(\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

    \(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{100.101}\)

    \(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{99}{202}\) (2)

    From (1) and (2)

    => \(\dfrac{99}{100}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}>\dfrac{99}{202}\)

  • See question detail

    \(\dfrac{2}{7}-\left(\dfrac{3}{8}+\dfrac{9}{7}\right)\)

    \(=\dfrac{2}{7}-\dfrac{3}{8}-\dfrac{9}{7}\)

    \(=-\dfrac{7}{7}-\dfrac{3}{8}\)

    \(=-1-\dfrac{3}{8}\)

    \(=-\dfrac{11}{8}\)

  • See question detail

    33m + 1 : 32m - 1 = 9

    3(3m + 1) - (2m - 1) = 32

    <=> 3m + 1 - 2m + 1 = 2

    <=> m + 2 = 2

    => m = 0

  • See question detail

    \(\left\{{}\begin{matrix}x^2y+xy^2+x+y=9\\xy+2x+2y=8\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)+x+y=9\\xy+2x+2y=8\end{matrix}\right.\)

    Đặt \(\left\{{}\begin{matrix}x+y=S\\xy=P\end{matrix}\right.\) , ta có :

    \(\left\{{}\begin{matrix}P.S+S=9\\P+2S=8\end{matrix}\right.\)

    \(\left\{{}\begin{matrix}S.\left(8-2S\right)+S=9\\P=8-2S\end{matrix}\right.\)

    \(\left\{{}\begin{matrix}2S^2+9S-9=0\\P=8-2S\end{matrix}\right.\)

    \(\Rightarrow\left\{{}\begin{matrix}S=\dfrac{3}{2}\\P=5\end{matrix}\right.\) hoặc \(\begin{matrix}S=3\\P=2\end{matrix}\)

    Just replace it , you have done the exam 

  • See question detail

    Number of students receiving B is :

    \(40.25\%=\dfrac{40.25}{100}=\dfrac{40}{4}=10\) (students)

    Anwser : 10 students 

  • See question detail

    We got these things from that picture .

    Because a//b 

    => \(\widehat{x}+\widehat{y}=180^0\)

    \(\dfrac{x}{y}=\dfrac{1}{4}\Leftrightarrow\dfrac{x}{1}=\dfrac{y}{4}\)

    Apply the same sequence properties , we have : 

    \(\dfrac{x}{1}=\dfrac{y}{4}=\dfrac{x+y}{1+4}=\dfrac{180}{5}=36^0\)

    \(\Rightarrow\left\{{}\begin{matrix}x=1.36^0=36^0\\y=4.36^0=144^0\end{matrix}\right.\)

  • See question detail

    \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{3}{4}\)

    \(\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{3}{4}\)

    \(\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{3}{4}\)

    \(\dfrac{\left(x+4\right)-\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{3}{4}\)

    \(\dfrac{3}{\left(x+1\right)\left(x+4\right)}=\dfrac{3}{4}\)

    => (x + 1)(x + 4) = 4

    => x2 + 5x + 4 = 4

    => x2 + 5x = 0

    => x(x + 5) = 0

    \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

    Hence , x = 0 or x = -5 

  • See question detail

    \(A=\dfrac{4^2.3^{10}}{2^3.9^5}=\dfrac{\left(2^2\right)^2.3^{10}}{2^3.\left(3^2\right)^5}=\dfrac{2^4.3^{10}}{2^3.3^{10}}=\dfrac{2^4}{2^3}=2\)

    Because 2 > 1

    So A > B

  • See question detail

    I can do this, if I'm wrong, just point me to the wrong place ! Thank you !

    We got this : 

    (x + y)2 \(\le\) 2(x2 + y2) 

    ( because x2 + 2xy + y2 \(\le\) 2x2 + 2y2

              =>  x2 + y2 \(\ge\) 2xy

              =>  x2 + y2 - 2xy  \(\ge\) 0

            <=> (x - y)2 \(\ge\) 0 this is true         )

    Means : (x + y)2 \(\le\) 2(x2 + y2) = 2.1 = 2                           (1)

    => \(\left(x+y\right)^2\le2\)

    <=>  \(x+y\le\sqrt{2}\)

    or \(-\left(x+y\right)\ge-\sqrt{2}\)                                           (2)

    But \(\dfrac{x}{y}+\dfrac{y}{x}=\dfrac{x^2+y^2}{xy}=\dfrac{1}{xy}\ge\dfrac{1}{\dfrac{\left(x^2+y^2\right)}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\)

    ( \(xy\ge\dfrac{\left(x^2+y^2\right)}{2}\) because \(2xy\ge x^2+y^2\))

    \(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge2\)                                                                   (3)

    We have : 

    \(P=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\)

    \(P=1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{1}{y}\)

    \(P=2+\left(\dfrac{1}{x}+\dfrac{1}{y}+x+y\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

    \(P=2+\left(2x+\dfrac{1}{x}\right)+\left(2y+\dfrac{1}{y}\right)-\left(x+y\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

    Apply inequality AM-GM , we have :

    \(2x+\dfrac{1}{x}\ge2.\sqrt{\dfrac{2x.1}{x}}=2\sqrt{2}\)

    \(2y+\dfrac{1}{y}\ge2.\sqrt{\dfrac{2y.1}{y}}=2\sqrt{2}\)

    \(-\left(x+y\right)\ge-\sqrt{2}\)     (from (2))

    \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)                 (from (3))

    So : 

    \(P\ge2+2\sqrt{2}+2\sqrt{2}-\sqrt{2}+2\)

    \(P\ge4+3\sqrt{2}\)

    The equation occurs :

    \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=1\\2x=\dfrac{1}{x}\\2y=\dfrac{1}{y}\end{matrix}\right.\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

  • See question detail

    \(\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+.....+\dfrac{1}{17.18.19.20}\)

    \(=\dfrac{1}{3}.\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+....+\dfrac{3}{17.18.19.20}\right)\)

    \(=\dfrac{1}{3}.\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+......+\dfrac{1}{17.18.19}-\dfrac{1}{18.19.20}\right)\)

    \(=\dfrac{1}{3}.\dfrac{-1}{18.19.20}=\dfrac{-1}{3.18.19.20}\)

  • See question detail

    \(\dfrac{1.2+2.4+3.6}{2.4+4.8+6.12}=\dfrac{1.2+2.4+3.6}{2.1.2.2+2.2.2.4+2.3.2.6}\)

    \(=\dfrac{1.2+2.4+3.6}{4.1.2+4.2.4+4.3.6}\)

    \(=\dfrac{1.2+2.4+3.6}{4.\left(1.2+2.4+3.6\right)}=\dfrac{1}{4}\)

  • See question detail

    x2y + xy2

    = x.xy + xy.y

    = xy.(x + y)

    = 3.4 = 12

    So , x2y + xy2 = 12

  • See question detail

    x2 + 4x + 5

    = x2 + 2.2.x + 22 + 1

    = (x + 2)2 + 1 

    We have : \(\left(x+2\right)^2\ge0\)

    => \(\left(x+2\right)^2+1\ge1\)

    => Min = 1

    <=> (x + 2)2 = 0

    <=> x + 2 = 0

    <=> x = -2 

  • See question detail

    We have this :

    a3 + b3 = (a + b)(a2 - ab + b2)        (From the equality constant)

    <=> a3 + b3 = 3.(5 - ab) 

    And : a + b = 3

    => (a + b)2 = 9

    => a2 + 2ab + b2 = 9

    but a2 + b2 = 5

    So 2ab = 4 this equality 

    => ab = 2

    Change ab = 2 into a3 + b3 = 3.(5 - ab) 

    => a3 + b3 = 3.(5 - 2) = 3.3 = 9 

    So : a3 + b3 = 9

  • See question detail

    5x(x - 2000) - x + 2000 = 0

    5x(x - 2000) - (x - 2000) = 0

    (5x - 1)(x - 2000) = 0

    \(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-2000=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2000\end{matrix}\right.\)

  • First
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM