MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    A B C D E

    Because : BD // AE

    => \(\widehat{DBA}=\widehat{BAE}\)  (2 Alternate interior angles)

    In another face , we got : \(\widehat{DBA}=\widehat{BEA}\) (2 Corresponding angles)

    So \(\widehat{BAE}=\widehat{BEA}\)

  • See question detail

    4cm 4cm

    Following Pythagoras theorem , the length of the diagonal is :

    \(Diagonal=\sqrt{4^2+4^2}=\sqrt{32}=6\) (cm)

  • See question detail

    On the 6th line , change to :

    \(\Delta ABC\) and \(\Delta ADE\) are similar triangles. 

  • See question detail

    We have :

    \(BC\perp AD\)

    \(DE\perp AD\)

    => BC // DE

    But BC cut AD at B and cut AE at C

    So \(\Delta ABC~\Delta ADE\)

    => \(\dfrac{AB}{AD}=\dfrac{AC}{AE}=\dfrac{BC}{DE}\)

    \(\Leftrightarrow\dfrac{4}{AD}=\dfrac{5}{AE}=\dfrac{BC}{9}\)

    Following Pythagoras theorem , we got :

    \(BC=\sqrt{AC^2-AB^2}=\sqrt{25-16}=3\)

    So \(\dfrac{4}{AD}=\dfrac{5}{AE}=\dfrac{3}{9}=\dfrac{1}{3}\)

    \(\Rightarrow\left\{{}\begin{matrix}AD=12\\AE=15\\DC=9\end{matrix}\right.\)

    \(\Rightarrow P_{\Delta ADE}=12+15+9=36\left(cm\right)\)

  • See question detail

    \(\dfrac{1}{x}+\dfrac{1}{2x}=\dfrac{4}{5}\)

    \(\dfrac{2}{2x}+\dfrac{1}{2x}=\dfrac{4}{5}\)

    \(\dfrac{3}{2x}=\dfrac{4}{5}\)

    \(\Leftrightarrow3.5=4.2x\)

    \(\Leftrightarrow15=8x\)

    \(\Leftrightarrow x=\dfrac{15}{8}\)

  • See question detail

    @AL No.....It's true ! :v 

  • See question detail

    e) x3 - 2x2y + 3xy2 

    = x3 - 2x2y + 6xy2 - 3xy2

    = x3 - 3xy2 - 2x2y + 6xy2

    = x(x2 - 3y2) - 2y(x2 - 3y2)

    = (x - 2y)(x2 - 3y2)

    f) x2 − xy − 2x + 2y

    = x(x - y) - 2(x - y)

    = (x - 2)(x - y) 

  • See question detail

    "Phân tích đa thức thành nhân tử" ??? Congratulation , you are super real ! :v 

    a) x3 - x2 + x - 1

    = x2(x - 1) + (x - 1)

    = (x2 + 1)(x - 1)

    b) 6x2y - 2xy2 + 3x - y

    = 2xy(3x - y) + (3x - y)

    = (2xy + 1)(3x - y)

    c) 4x2 + 1 (It's wrong)

    Change to : 4x2 - 1

    = (2x)2 - 1

    = (2x + 1)(2x - 1)

    d) x2 - 9x + 8

    = x2 - x - 8x + 8

    = x(x - 1) - 8(x - 1)

    = (x - 8)(x - 1)

  • See question detail

    Ohhh.....i'm sorry about that @AL :)

    Change to : \(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\)

  • See question detail

    Call intersection of C and BH is W

    Revised to : Call intersection of EC and BH is W

  • See question detail

    Are you kidding me ??? :V

    A B C D E F H M N I W O O

    a) Have : \(\widehat{EAC}=90^0+\widehat{BAC}\)

                   \(\widehat{BAH}=90^0+\widehat{BAC}\)

    => \(\widehat{EAC}=\widehat{BAH}\)

    Consider \(\Delta EAC\) and \(\Delta BAH\) , have :

    \(\widehat{EAC}=\widehat{BAH}\)

    EA = EB (From hypothesis)         => \(\Delta EAC\) = \(\Delta BAH\)

    HA = HC (From hypothesis) 

    => EC = BH

    Call intersection of C and BH is W

    Similar, call intersection of BH and AC is O

    We have :

                \(\widehat{HAO}+\widehat{AOH}+\widehat{OHA}=180^0\) (total three angle in a triangle)

    And :   \(\widehat{CWO}+\widehat{WOC}+\widehat{OCW}=180^0\)

    We got : \(\widehat{AOH}=\widehat{WOC}\) 

                  \(\widehat{OHA}=\widehat{OCW}\) (From 2 equal triangles)

    => \(\widehat{HAO}=\widehat{CWO}=90^0\) 

    => \(HB\perp EC\)

    b) We have :

    NI is the average line of \(\Delta BHC\)

    => \(NI=\dfrac{1}{2}BH\)     and     NI // BH

    Similar with MI we have :

    \(MI=\dfrac{1}{2}EC\)          and       MI // EC

    But BH = EC

    => MI = NI              (1)

    We have :

    \(HB\perp EC\)

    EC // MI 

    => \(BH\perp MI\)

    Similar : 

    \(BH\perp MI\)

    NI // BH

    => \(MI\perp NI\)          (2)

    From (1) and (2)

    => \(\Delta MIN\) is the isosceles square triangle at I 

  • See question detail

    A B C D F P E y x

    Following threads , we got :

    EP // AF (Ex // AF)

    FP // AE (Fy // AE)

    => AEPT is the parallelogram  (1)

    <=> AF = AE

    With ABCD is the square , we have : AB = AD

    Consider \(\Delta ADF\) and \(\Delta ABE\) , have :

    AB = AD

    AE = AF                                              => \(\Delta ADF\) = \(\Delta ABE\) (e - e - e)

    BE = DF (From the hypothesis) 

    => \(\widehat{FAD}=\widehat{EAB}\)

    We have :

    \(\widehat{EAB}+\widehat{DAE}=90^0\)

    but \(\widehat{FAD}=\widehat{EAB}\)

    => \(\widehat{FAD}+\widehat{DAE}=90^0\)        (2)

    From (1) and (2)

    => AEPF is the square 

  • See question detail

    Let B = \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)

    \(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.......+\dfrac{1}{99}-\dfrac{1}{100}\)

    \(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+......+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+........+\dfrac{1}{100}\right)\)

    \(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{100}\right)\)

    \(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

    \(=\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+........+\dfrac{1}{100}\)  

    So \(\left(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+.......+\dfrac{1}{100}\right):\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\right)=1\)

  • See question detail

    \(\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}......\dfrac{2499}{2500}\)

    \(=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}......\dfrac{49.51}{50.50}\)

    \(=\dfrac{2.4.3.5.4.6....49.51}{3.3.4.4.5.5.....50.50}\)

    \(=\dfrac{2.4.5.6....51}{3.4.5....50}\)

    \(=\dfrac{2.51}{3.50}\)

    \(=\dfrac{17}{25}\)

  • See question detail

    We have :

    \(\dfrac{1}{2!}+\dfrac{1}{3!}+.....+\dfrac{1}{100!}=\dfrac{1}{1.2}+\dfrac{1}{1.2.3}+....+\dfrac{1}{1.2.....100}\)

    \(.........< \dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{99.100}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

    \(.........< 1-\dfrac{1}{100}< 1\)

    \(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}< 1\)

  • See question detail

    We got : 

    x = 9

    => x + 1 = 10

    We have :

    A = x2016 - 10.x2015 + 10.x2014 - 10.x2013 + ........ + 10x2 - 10x + 2026

    A = x2016 - (x + 1).x2015 + (x + 1).x2014 - (x + 1).x2013 + ........ + (x + 1).x2 - (x + 1)x + 2026

    A = x2016 - x2016 - x2015 + x2015 + x2014 - x2014 - x2013 + ......... + x3 + x2 - x2 - x + 2026

    A = -x + 2016

    A = -9 + 2026

    A = 2017

  • See question detail

    We got : 

    x = 9

    => x + 1 = 10

    We have :

    A = x2016 - 10.x2015 + 10.x2014 - 10.x2013 + ........ + 10x2 - 10x + 2026

    A = x2016 - (x + 1).x2015 + (x + 1).x2014 - (x + 1).x2013 + ........ + (x + 1).x2 - (x + 1)x + 2026

    A = x2016 - x2016 - x2015 + x2015 + x2014 - x2014 - x2013 + ......... + x3 + x2 - x2 - x + 2026

    A = -x + 2016

    A = -9 + 2026

    A = 2017

  • See question detail

    Call F1 is an exterior angle 

     and F2 is an adjacent angle 

    We have :

    F1 + F2 = 1800 ( 2 adjacent offset angle )

    => F2 = 1800 - 5x - 340 = 1460 - 5x

    Consider triangle DEF , we have :

    F2 + D + E = 1800 - 5x + 2x + 50 + 4x + 200 = 1800

    <=> 2050 + x = 1800

    => x = 2050 - 1800

    => x = 250

  • See question detail

    Edit post : Give 2017 positive integer numbers a1 , a2 , a3 , a4 , ............... a2017 so that 

    --------------------------------------------------------------------------------------------------------------

    Suppose a1 , a2 , a3 , a4 , ...... , a2017 are different .

    And 0 < a1 < a2 < .............. < a2017

    Since is a positive integer so that we have :

    \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+........+\dfrac{1}{a_{2017}}\le\dfrac{1}{1}+\dfrac{1}{2}+.........+\dfrac{1}{2017}< \dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{2}...............+\dfrac{1}{2}=1+\dfrac{2016}{2}=1+1008=1009\)

    From this , if those numbers are different so that the sum always smaller than 1009 , but those are equal to 1009 , that means there are 2 in 2017 numbers are equal.

  • See question detail

    ohhh.....! I'm sorry , the last row will be :

    So , there are 120 kilometres do you live from the station . 

  • First
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM