-
See question detail
Because : BD // AE
=> \(\widehat{DBA}=\widehat{BAE}\) (2 Alternate interior angles)
In another face , we got : \(\widehat{DBA}=\widehat{BEA}\) (2 Corresponding angles)
So \(\widehat{BAE}=\widehat{BEA}\)
-
See question detail
Following Pythagoras theorem , the length of the diagonal is :
\(Diagonal=\sqrt{4^2+4^2}=\sqrt{32}=6\) (cm)
-
See question detail
On the 6th line , change to :
\(\Delta ABC\) and \(\Delta ADE\) are similar triangles.
-
See question detail
We have :
\(BC\perp AD\)
\(DE\perp AD\)
=> BC // DE
But BC cut AD at B and cut AE at C
So \(\Delta ABC~\Delta ADE\)
=> \(\dfrac{AB}{AD}=\dfrac{AC}{AE}=\dfrac{BC}{DE}\)
\(\Leftrightarrow\dfrac{4}{AD}=\dfrac{5}{AE}=\dfrac{BC}{9}\)
Following Pythagoras theorem , we got :
\(BC=\sqrt{AC^2-AB^2}=\sqrt{25-16}=3\)
So \(\dfrac{4}{AD}=\dfrac{5}{AE}=\dfrac{3}{9}=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}AD=12\\AE=15\\DC=9\end{matrix}\right.\)
\(\Rightarrow P_{\Delta ADE}=12+15+9=36\left(cm\right)\)
-
See question detail
\(\dfrac{1}{x}+\dfrac{1}{2x}=\dfrac{4}{5}\)
\(\dfrac{2}{2x}+\dfrac{1}{2x}=\dfrac{4}{5}\)
\(\dfrac{3}{2x}=\dfrac{4}{5}\)
\(\Leftrightarrow3.5=4.2x\)
\(\Leftrightarrow15=8x\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
-
See question detail
@AL No.....It's true ! :v
-
See question detail
e) x3 - 2x2y + 3xy2
= x3 - 2x2y + 6xy2 - 3xy2
= x3 - 3xy2 - 2x2y + 6xy2
= x(x2 - 3y2) - 2y(x2 - 3y2)
= (x - 2y)(x2 - 3y2)
f) x2 − xy − 2x + 2y
= x(x - y) - 2(x - y)
= (x - 2)(x - y)
-
See question detail
"Phân tích đa thức thành nhân tử" ??? Congratulation , you are super real ! :v
a) x3 - x2 + x - 1
= x2(x - 1) + (x - 1)
= (x2 + 1)(x - 1)
b) 6x2y - 2xy2 + 3x - y
= 2xy(3x - y) + (3x - y)
= (2xy + 1)(3x - y)
c) 4x2 + 1 (It's wrong)
Change to : 4x2 - 1
= (2x)2 - 1
= (2x + 1)(2x - 1)
d) x2 - 9x + 8
= x2 - x - 8x + 8
= x(x - 1) - 8(x - 1)
= (x - 8)(x - 1)
-
See question detail
Ohhh.....i'm sorry about that @AL :)
Change to : \(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\)
-
See question detail
Call intersection of C and BH is W
Revised to : Call intersection of EC and BH is W
-
See question detail
Are you kidding me ??? :V
a) Have : \(\widehat{EAC}=90^0+\widehat{BAC}\)
\(\widehat{BAH}=90^0+\widehat{BAC}\)
=> \(\widehat{EAC}=\widehat{BAH}\)
Consider \(\Delta EAC\) and \(\Delta BAH\) , have :
\(\widehat{EAC}=\widehat{BAH}\)
EA = EB (From hypothesis) => \(\Delta EAC\) = \(\Delta BAH\)
HA = HC (From hypothesis)
=> EC = BH
Call intersection of C and BH is W
Similar, call intersection of BH and AC is O
We have :
\(\widehat{HAO}+\widehat{AOH}+\widehat{OHA}=180^0\) (total three angle in a triangle)
And : \(\widehat{CWO}+\widehat{WOC}+\widehat{OCW}=180^0\)
We got : \(\widehat{AOH}=\widehat{WOC}\)
\(\widehat{OHA}=\widehat{OCW}\) (From 2 equal triangles)
=> \(\widehat{HAO}=\widehat{CWO}=90^0\)
=> \(HB\perp EC\)
b) We have :
NI is the average line of \(\Delta BHC\)
=> \(NI=\dfrac{1}{2}BH\) and NI // BH
Similar with MI we have :
\(MI=\dfrac{1}{2}EC\) and MI // EC
But BH = EC
=> MI = NI (1)
We have :
\(HB\perp EC\)
EC // MI
=> \(BH\perp MI\)
Similar :
\(BH\perp MI\)
NI // BH
=> \(MI\perp NI\) (2)
From (1) and (2)
=> \(\Delta MIN\) is the isosceles square triangle at I
-
See question detail
Following threads , we got :
EP // AF (Ex // AF)
FP // AE (Fy // AE)
=> AEPT is the parallelogram (1)
<=> AF = AE
With ABCD is the square , we have : AB = AD
Consider \(\Delta ADF\) and \(\Delta ABE\) , have :
AB = AD
AE = AF => \(\Delta ADF\) = \(\Delta ABE\) (e - e - e)
BE = DF (From the hypothesis)
=> \(\widehat{FAD}=\widehat{EAB}\)
We have :
\(\widehat{EAB}+\widehat{DAE}=90^0\)
but \(\widehat{FAD}=\widehat{EAB}\)
=> \(\widehat{FAD}+\widehat{DAE}=90^0\) (2)
From (1) and (2)
=> AEPF is the square
-
See question detail
Let B = \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+......+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+........+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+........+\dfrac{1}{100}\)
So \(\left(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+.......+\dfrac{1}{100}\right):\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\right)=1\) -
See question detail
\(\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}......\dfrac{2499}{2500}\)
\(=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}......\dfrac{49.51}{50.50}\)
\(=\dfrac{2.4.3.5.4.6....49.51}{3.3.4.4.5.5.....50.50}\)
\(=\dfrac{2.4.5.6....51}{3.4.5....50}\)
\(=\dfrac{2.51}{3.50}\)
\(=\dfrac{17}{25}\)
-
See question detail
We have :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+.....+\dfrac{1}{100!}=\dfrac{1}{1.2}+\dfrac{1}{1.2.3}+....+\dfrac{1}{1.2.....100}\)
\(.........< \dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{99.100}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(.........< 1-\dfrac{1}{100}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}< 1\)
-
See question detail
We got :
x = 9
=> x + 1 = 10
We have :
A = x2016 - 10.x2015 + 10.x2014 - 10.x2013 + ........ + 10x2 - 10x + 2026
A = x2016 - (x + 1).x2015 + (x + 1).x2014 - (x + 1).x2013 + ........ + (x + 1).x2 - (x + 1)x + 2026
A = x2016 - x2016 - x2015 + x2015 + x2014 - x2014 - x2013 + ......... + x3 + x2 - x2 - x + 2026
A = -x + 2016
A = -9 + 2026
A = 2017
-
See question detail
We got :
x = 9
=> x + 1 = 10
We have :
A = x2016 - 10.x2015 + 10.x2014 - 10.x2013 + ........ + 10x2 - 10x + 2026
A = x2016 - (x + 1).x2015 + (x + 1).x2014 - (x + 1).x2013 + ........ + (x + 1).x2 - (x + 1)x + 2026
A = x2016 - x2016 - x2015 + x2015 + x2014 - x2014 - x2013 + ......... + x3 + x2 - x2 - x + 2026
A = -x + 2016
A = -9 + 2026
A = 2017
-
See question detail
Call F1 is an exterior angle
and F2 is an adjacent angle
We have :
F1 + F2 = 1800 ( 2 adjacent offset angle )
=> F2 = 1800 - 5x - 340 = 1460 - 5x
Consider triangle DEF , we have :
F2 + D + E = 1800 - 5x + 2x + 50 + 4x + 200 = 1800
<=> 2050 + x = 1800
=> x = 2050 - 1800
=> x = 250
-
See question detail
Edit post : Give 2017 positive integer numbers a1 , a2 , a3 , a4 , ............... a2017 so that
--------------------------------------------------------------------------------------------------------------
Suppose a1 , a2 , a3 , a4 , ...... , a2017 are different .
And 0 < a1 < a2 < .............. < a2017
Since is a positive integer so that we have :
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+........+\dfrac{1}{a_{2017}}\le\dfrac{1}{1}+\dfrac{1}{2}+.........+\dfrac{1}{2017}< \dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{2}...............+\dfrac{1}{2}=1+\dfrac{2016}{2}=1+1008=1009\)
From this , if those numbers are different so that the sum always smaller than 1009 , but those are equal to 1009 , that means there are 2 in 2017 numbers are equal.
-
See question detail
ohhh.....! I'm sorry , the last row will be :
So , there are 120 kilometres do you live from the station .