-
See question detail
We have :
\(\dfrac{1}{1^2}>\dfrac{1}{1.2}\)
\(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)
..............
\(\dfrac{1}{100^2}>\dfrac{1}{99.100}\)
=> \(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}>\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{99.100}=A\)
So B > A
-
See question detail
x4 + x3 + 2x2 + x + 1 = 0
x3.(x + 1) + x(x + 1) + x2 + 1 = 0
(x3 + x)(x + 1) + x2 + 1= 0
x(x2 + 1)(x + 1) + x2 + 1 = 0
Give x2 + 1 = t
=> x(x + 1) . t + t = 0
=> [x(x + 1) + 1] . t = 0
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)+1=0\\t=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=-1\\x^2+1=0\end{matrix}\right.\)
Right here, i can't do anything more , is there anyone can do more ???
-
See question detail
x = 3y
=> \(\dfrac{1}{x}=\dfrac{1}{3y}\)
We got this :
\(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}}{\dfrac{1}{x}-\dfrac{1}{y}}=\dfrac{\dfrac{1}{3y}+\dfrac{1}{y}}{\dfrac{1}{3y}-\dfrac{1}{y}}=\dfrac{\dfrac{4y}{3y^2}}{\dfrac{-2y}{3y^2}}=\dfrac{4y}{3y^2}.\dfrac{3y^2}{-2y}=\dfrac{4y}{-2y}=-2\)
-
See question detail
You have to prove this :
x3 + y3 + z3 \(\ge\) 3xyz
-
See question detail
1) We have :
x3 + y3 + z3 \(\ge\) 3xyz
<=> x3 + y3 + z3 - 3xyz \(\ge\) 0
Now , we are going to prove this :
x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)
You can prove that :)
So , we have :
(x + y + z)(x2 + y2 + z2 - xy - yz - zx) \(\ge\) 0
Suppose, this inequality is true .
In this inequality , we have two case .
1. Two factor are positive
2. Two factor are negative
In the second case , it can not take place
Because x,y,z are positive mean x + y + z \(\ge\) 0 (1)
So , the second case is failed .
=> x2 + y2 + z2 - xy - yz - zx \(\ge\) 0
=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx \(\ge\) 0
=> (x - y)2 + (y - z)2 + (z - x)2 \(\ge\) 0 (right) (2)
From (1) and (2)
=> We have things to prove .
-
See question detail
\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}+\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
-
See question detail
Because BD = DC => D is the midpoint of BC
Other way , AD cut BC at midpoint D
=> AD is median line of \(\Delta ABC\)
With AD = DC = AD
=> \(\Delta ABC\) is square triangle (Because of the nature of the median lines in the triangle)
-
See question detail
Apply properties of equal ratio ranges , we have :
\(\dfrac{a+b-c}{c}=\dfrac{a+b-c}{b}=\dfrac{c+b-a}{a}=\dfrac{a+b-c+a+b-c+c+b-a}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=2c\\a+c-b=2b\\b+c-a=2a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=3c\\a+c=3b\\b+c=3a\end{matrix}\right.\)
Change all these equalities into x , we have :
x = \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{3c.3a.3b}{abc}=3\)
Hence , x = 3
-
See question detail
Call three fractions is A,B,C
We have : \(A=\dfrac{x}{y}\) ; \(B=\dfrac{y}{t}\) ; \(C=\dfrac{e}{f}\)
Follows the threads : \(\dfrac{x}{3}=\dfrac{z}{4}=\dfrac{e}{5}\) ; \(\dfrac{y}{5}=\dfrac{t}{1}=\dfrac{f}{2}\)
\(\Rightarrow\dfrac{\dfrac{x}{3}}{\dfrac{y}{5}}=\dfrac{\dfrac{z}{4}}{\dfrac{t}{1}}=\dfrac{\dfrac{e}{5}}{\dfrac{f}{2}}\)
\(\Rightarrow\dfrac{x}{3}.\dfrac{5}{y}=\dfrac{z}{4}.\dfrac{1}{t}=\dfrac{e}{5}.\dfrac{2}{f}\)
\(\Rightarrow\dfrac{x}{y}.\dfrac{5}{3}=\dfrac{z}{t}.\dfrac{1}{4}=\dfrac{e}{f}.\dfrac{2}{5}\)
\(\Rightarrow A:\dfrac{3}{5}=B:4=C:\dfrac{5}{2}\)
Applying the same sequence properties we have:
\(\dfrac{A}{\dfrac{3}{5}}=\dfrac{B}{4}=\dfrac{C}{\dfrac{5}{2}}=\dfrac{A+B+C}{\dfrac{3}{5}+4+\dfrac{5}{2}}=\dfrac{\dfrac{213}{70}}{\dfrac{71}{10}}=\dfrac{3}{7}\)
=> \(\left\{{}\begin{matrix}A=\dfrac{3}{7}.\dfrac{3}{5}=\dfrac{9}{35}\\B=\dfrac{4.3}{7}=\dfrac{12}{7}\\C=\dfrac{5}{2}.\dfrac{3}{7}=\dfrac{15}{14}\end{matrix}\right.\)
-
See question detail
The answer is :
(12 x 3) + (4 x 2) = 36 + 8 = 44
-
See question detail
In 1 tetrahedrons , we have 4 faces around it
With 1 cube , we have 6 faces
That so , if we have 13 tetrahedrons mean we have 4.13 = 52 faces
And with 5 cubes mean we have 5.6 = 30 faces
The total is : 52 + 30 = 82 faces
-
See question detail
a) Apply Inequality - Cauchy , we have :
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2.\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2.1=2\)
b) We have :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (Đúng)
=> \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
-
See question detail
1. Call two consecutive odd number is :
2k + 1 ; 2k + 3
We have :
\(\dfrac{\left(2k+1\right)+\left(2k+3\right)}{2}=248\)
=> 4k + 4 = 2.248
=> 2k + 2 = 248
=> 2k = 246
=> k = 123
So , two consecutive odd number is :
2k + 1 = 2.123 + 1 = 246 + 1 = 247
2k + 3 = 2,123 + 3 = 246 + 3 = 249
-
See question detail
Follows the picture , we can see area A , B and C are square .
Call the length of the square edges of squares A, B, C in turn a, b, c
=> a = \(\sqrt{S_A}=\sqrt{100}=10\) ; b = \(\sqrt{S_B}=\sqrt{36}=6\)
Apply the Pythagoras , we have :
b2 + c2 = a2
c2 = a2 - b2
c2 = 102 - 62 = 64
=> c = 8 (c can not be equal to -8 because it's the length of an edge)
=> SC = c2 = 82 = 64 (cm2)
-
See question detail
We have : 3.5.7.9.11 = (3.5).7.9.11 = 15.7.9.11 = .......5
So , the last digit number is 5
-
See question detail
We have :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{2017^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{2016.2017}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2016}-\dfrac{1}{2017}=1-\dfrac{1}{2017}< 1\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2017^2}< 1\)
-
See question detail
We have :
\(\widehat{A}=3\widehat{B}\) => \(\widehat{B}=\dfrac{\widehat{A}}{3}\) (1)
\(2\widehat{A}=\widehat{C}\) (2)
Apply a total of 3 corners in a triangle :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Change (1) and (2) in this equality :
=> \(\widehat{A}+\dfrac{\widehat{A}}{3}+2\widehat{A}=180^0\)
=> \(\dfrac{10}{3}\widehat{A}=180^0\)
=> \(\widehat{A}=54^0\)
-
See question detail
\(\left(5\dfrac{1}{3}-2\dfrac{1}{2}\right)+\left(5\dfrac{1}{2}-3\dfrac{1}{3}\right)\)
\(=5\dfrac{1}{3}-2\dfrac{1}{2}+5\dfrac{1}{2}-3\dfrac{1}{3}\)
\(=\left(5\dfrac{1}{3}-3\dfrac{1}{3}\right)+\left(5\dfrac{1}{2}-2\dfrac{1}{2}\right)\)
\(=2+3=5\)
-
See question detail
Phan Thanh Tinh ok ok , i'm sorry !
-
See question detail
13 = 1.13
4 = 22
6 = 2.3
BCNN(13 ; 4 ; 6) = 13.22.3 = 156