MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    We have :

    \(\dfrac{1}{1^2}>\dfrac{1}{1.2}\)

    \(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

    \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

    ..............

    \(\dfrac{1}{100^2}>\dfrac{1}{99.100}\)

    => \(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}>\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{99.100}=A\)

    So B > A

  • See question detail

    x4 + x3 + 2x2 + x + 1 = 0

    x3.(x + 1) + x(x + 1) + x2 + 1 = 0

    (x3 + x)(x + 1) + x2 + 1=  0

    x(x2 + 1)(x + 1) + x2 + 1 = 0

    Give x2 + 1 = t

    => x(x + 1) . t + t = 0

    => [x(x + 1) + 1] . t = 0

    \(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)+1=0\\t=0\end{matrix}\right.\)

    \(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=-1\\x^2+1=0\end{matrix}\right.\)

    Right here, i can't do anything more , is there anyone can do more ???

  • See question detail

    x = 3y

    => \(\dfrac{1}{x}=\dfrac{1}{3y}\)

    We got this :

    \(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}}{\dfrac{1}{x}-\dfrac{1}{y}}=\dfrac{\dfrac{1}{3y}+\dfrac{1}{y}}{\dfrac{1}{3y}-\dfrac{1}{y}}=\dfrac{\dfrac{4y}{3y^2}}{\dfrac{-2y}{3y^2}}=\dfrac{4y}{3y^2}.\dfrac{3y^2}{-2y}=\dfrac{4y}{-2y}=-2\)

  • See question detail

    You have to prove this :

    x3 + y3 + z3 \(\ge\) 3xyz

  • See question detail

    1) We have :

    x3 + y3 + z3 \(\ge\) 3xyz

    <=> x3 + y3 + z3 - 3xyz \(\ge\) 0

    Now , we are going to prove this :

    x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)

    You can prove that :) 

    So , we have :

     (x + y + z)(x2 + y2 + z2 - xy - yz - zx) \(\ge\) 0

    Suppose, this inequality is true .

    In this inequality , we have two case .

    1. Two factor are positive 

    2. Two factor are negative 

    In the second case , it can not take place 

    Because x,y,z are positive mean x + y + z \(\ge\) 0 (1)

    So , the second case is failed .

    => x2 + y2 + z2 - xy - yz - zx \(\ge\) 0

    => 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx \(\ge\) 0

    => (x - y)2 + (y - z)2 + (z - x)2 \(\ge\) 0 (right)      (2)

    From (1) and (2)

    => We have things to prove .

  • See question detail

    \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

    \(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)

    \(\Leftrightarrow\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}+\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)

    \(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

    \(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

  • See question detail

    Because BD = DC => D is the midpoint of BC

    Other way , AD cut BC at midpoint D

    => AD is median line of \(\Delta ABC\)

    With AD = DC = AD 

    => \(\Delta ABC\) is square triangle (Because of the nature of the median lines in the triangle)

  • See question detail

    Apply properties of equal ratio ranges , we have :

    \(\dfrac{a+b-c}{c}=\dfrac{a+b-c}{b}=\dfrac{c+b-a}{a}=\dfrac{a+b-c+a+b-c+c+b-a}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=2\)

    \(\Rightarrow\left\{{}\begin{matrix}a+b-c=2c\\a+c-b=2b\\b+c-a=2a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=3c\\a+c=3b\\b+c=3a\end{matrix}\right.\)

    Change all these equalities into x , we have :

    x = \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{3c.3a.3b}{abc}=3\)

    Hence , x = 3 

  • See question detail

    Call three fractions is A,B,C

    We have : \(A=\dfrac{x}{y}\) ; \(B=\dfrac{y}{t}\) ; \(C=\dfrac{e}{f}\)

    Follows the threads : \(\dfrac{x}{3}=\dfrac{z}{4}=\dfrac{e}{5}\) ; \(\dfrac{y}{5}=\dfrac{t}{1}=\dfrac{f}{2}\)

    \(\Rightarrow\dfrac{\dfrac{x}{3}}{\dfrac{y}{5}}=\dfrac{\dfrac{z}{4}}{\dfrac{t}{1}}=\dfrac{\dfrac{e}{5}}{\dfrac{f}{2}}\)

    \(\Rightarrow\dfrac{x}{3}.\dfrac{5}{y}=\dfrac{z}{4}.\dfrac{1}{t}=\dfrac{e}{5}.\dfrac{2}{f}\)

    \(\Rightarrow\dfrac{x}{y}.\dfrac{5}{3}=\dfrac{z}{t}.\dfrac{1}{4}=\dfrac{e}{f}.\dfrac{2}{5}\)

    \(\Rightarrow A:\dfrac{3}{5}=B:4=C:\dfrac{5}{2}\)

    Applying the same sequence properties we have:

    \(\dfrac{A}{\dfrac{3}{5}}=\dfrac{B}{4}=\dfrac{C}{\dfrac{5}{2}}=\dfrac{A+B+C}{\dfrac{3}{5}+4+\dfrac{5}{2}}=\dfrac{\dfrac{213}{70}}{\dfrac{71}{10}}=\dfrac{3}{7}\)

    => \(\left\{{}\begin{matrix}A=\dfrac{3}{7}.\dfrac{3}{5}=\dfrac{9}{35}\\B=\dfrac{4.3}{7}=\dfrac{12}{7}\\C=\dfrac{5}{2}.\dfrac{3}{7}=\dfrac{15}{14}\end{matrix}\right.\)

  • See question detail

    The answer is :

    (12 x 3) + (4 x 2) = 36 + 8 = 44

  • See question detail

    In 1 tetrahedrons , we have 4 faces around it

    With 1 cube , we have 6 faces 

    That so , if we have 13 tetrahedrons mean we have 4.13 = 52 faces

    And with 5 cubes mean we have 5.6 = 30 faces

    The total is : 52 + 30 = 82 faces 

  • See question detail

    a) Apply Inequality - Cauchy , we have :

    \(\dfrac{a}{b}+\dfrac{b}{a}\ge2.\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2.1=2\)

    b) We have :

    \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

    \(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

    \(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

    \(\Rightarrow a^2+2ab+b^2-4ab\ge0\)

    \(\Rightarrow a^2-2ab+b^2\ge0\)

    \(\Rightarrow\left(a-b\right)^2\ge0\) (Đúng)

    => \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

  • See question detail

    1. Call two consecutive odd number is :

    2k + 1 ; 2k + 3

    We have :

    \(\dfrac{\left(2k+1\right)+\left(2k+3\right)}{2}=248\)

    => 4k + 4 = 2.248

    => 2k + 2 = 248

    => 2k =  246

    => k = 123

    So , two consecutive odd number is :

    2k + 1 = 2.123 + 1 = 246 + 1 = 247

    2k + 3 = 2,123 + 3 = 246 + 3 = 249 

  • See question detail

    A B C a b c

    Follows the picture , we can see area A , B and C are square .

    Call the length of the square edges of squares A, B, C in turn a, b, c

    => a = \(\sqrt{S_A}=\sqrt{100}=10\) ; b = \(\sqrt{S_B}=\sqrt{36}=6\)

    Apply the Pythagoras , we have :

    b2 + c2 = a2

    c2 = a2 - b2

    c2 = 102 - 62 = 64

    => c = 8 (c can not be equal to -8 because it's the length of an edge)

    => SC = c2 = 82 = 64 (cm2)

  • See question detail

    We have : 3.5.7.9.11 = (3.5).7.9.11 = 15.7.9.11 = .......5

    So , the last digit number is 5

  • See question detail

    We have :

    \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{2017^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{2016.2017}\)

    \(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2016}-\dfrac{1}{2017}=1-\dfrac{1}{2017}< 1\)

    \(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2017^2}< 1\)

  • See question detail

    We have :

    \(\widehat{A}=3\widehat{B}\) => \(\widehat{B}=\dfrac{\widehat{A}}{3}\)  (1)

    \(2\widehat{A}=\widehat{C}\)  (2)

    Apply a total of 3 corners in a triangle :

    \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

    Change (1) and (2) in this equality :

    => \(\widehat{A}+\dfrac{\widehat{A}}{3}+2\widehat{A}=180^0\)

    => \(\dfrac{10}{3}\widehat{A}=180^0\)

    => \(\widehat{A}=54^0\)

  • See question detail

    \(\left(5\dfrac{1}{3}-2\dfrac{1}{2}\right)+\left(5\dfrac{1}{2}-3\dfrac{1}{3}\right)\)

    \(=5\dfrac{1}{3}-2\dfrac{1}{2}+5\dfrac{1}{2}-3\dfrac{1}{3}\)

    \(=\left(5\dfrac{1}{3}-3\dfrac{1}{3}\right)+\left(5\dfrac{1}{2}-2\dfrac{1}{2}\right)\)

    \(=2+3=5\)

  • See question detail

    Phan Thanh Tinh  ok ok , i'm sorry !

  • See question detail

    13 = 1.13

    4 = 22 

    6 = 2.3

    BCNN(13 ; 4 ; 6) = 13.22.3 = 156

  • First
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM