MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    Call Alice's age is a

            Betty's age is b

     and  Clara is c 

    Follow the threads , we have :

    a + b + c = 29  (1)

    b = a + 4  (2)

    c = b + 6   (3)

    Change (3) , (2) to (1)

    a + b + c = a + (a + 4) + (b + 6)

    <=> a + (a + 4) + (a + 10) = 29

    => 3a + 14 = 29

    => 3a = 15

    => a = 5

    So , Alice's age is 5

  • See question detail

    \(F=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3}}}=\dfrac{1}{1+\dfrac{1}{\dfrac{6}{3}+\dfrac{1}{3}}}=\dfrac{1}{1+\dfrac{1}{\dfrac{7}{3}}}=\dfrac{1}{1+\dfrac{3}{7}}=\dfrac{1}{\dfrac{7}{7}+\dfrac{3}{7}}=\dfrac{1}{\dfrac{10}{7}}=\dfrac{7}{10}=0,7\)

  • See question detail

    We have the following summary : 

    1 mile <=> 1p12' = 72' = \(\dfrac{1}{50}h\)

    So , in 1 hour , the car can travel :

    1mile x 50  <=>  \(\dfrac{1}{50}.50h=1h\)

    => x = 50 (mile)

  • See question detail

    There are : (200 - 1) : 1 + 1 = 200 numbers from 1 to 200

    We have a sequence of two-digit numbers are as follows :

    2 ; 12 ; 22 ; 32 ; ....... ; 192

    Apply a formula to count numbers , we have :

    (192 - 2) : 10 + 1 = 20 

    There are also numbers with 2 digits such as

    20 ; 21 ; 23 ; 24 ; .... ; 29 ; 120 ; 121 ; 122 ; 123 ; ...... 129

    And there are have 18 also numbers .

    So , from these information , we have 38 numbers have digit 2

    We have :

    200 - 38 = 162 (numbers)

    There are 162 numbers from 1 to 200 do not have the digit 2 

  • See question detail

    a) There are : 7 x 7 x 6 x 5 = 1470 numbers

    b) There are : 4 x 3 x 2 x 1 = 24 old numbers 

  • See question detail

    a) There are :7 x 7 x 6 x 5 = 1470 numbers

    b) There are :4 x 4 x 3 x 2 = 96 even numbers

  • See question detail

    The hole stands anywhere , is it ? Or in the middle ?

  • See question detail

    We have :

    22009 is even number 

    32009 = 34.502 . 3 = .....1 . 3 = ......3 (odd number)

    72009 = 74.502 . 7 = .....1 . 7 = .....7(odd number)

     = 94.502 . 9 = ......1 . 9 = .......9(odd number)

    So : 22009 + 32009 + 72009 + 92009 =  .....2 + .....3 + ....7 + .....9 = ......21 (odd number)

  • See question detail

    Because the lowest common multiple of a and b is 50 . So all possible values of a and b is :

    (a;b) = {1 ; 2 ; 5 ; 10 ; 25 ; 50}

  • See question detail

    b3 = 3375 

    => b = \(\sqrt[3]{3375}=15\)

    Because a,b,c are three consecutive odd number  and b = 15 so

    a = 13 ; b = 15 ; c = 17

    ac = 15 . 17 = 221 

  • See question detail

    We have :

    \(\left|x\right|\ge0\)

    \(\left|x\right|+2004\ge2004\)

    \(\dfrac{\left|x\right|+2004}{-2005}\le\dfrac{2004}{-2005}\)

    So MAXB = \(\dfrac{-2004}{2005}\)

    \(\Leftrightarrow\dfrac{\left|x\right|+2004}{-2005}=\dfrac{-2004}{2005}\)

    => |x| + 2004 = 2004

    => |x| = 2004 - 2004 

    => |x| = 0

    => x = 0

  • See question detail

    We have :

    a \(\le\) c + 2

    b + 1 \(\le\) c + 2

    c + 2 = c + 2

    => a + b + 1 + c + 2 \(\le\) c + 2 + c + 2 + c + 2

    => (a + b + c) + (1 + 2) \(\le\) 3c + 6

    => 1 + 3 \(\le\) 3c + 6

    => 4 \(\le\) 3c + 6

    => \(-\dfrac{2}{3}\) \(\le\) c

    => Minc = \(-\dfrac{2}{3}\)

    => a + b +( \(-\dfrac{2}{3}\)) = 1 

    => a + b = \(\dfrac{5}{3}\)

    With a = b + 1

    => a + b = \(\dfrac{5}{3}\)

    => b + 1 + b = \(\dfrac{5}{3}\)

    => b = \(\dfrac{1}{3}\)    =>    a = \(\dfrac{4}{3}\)  (1)

    With a < b + 1

    => b + 1 + b < \(\dfrac{5}{3}\)

    => b < \(\dfrac{1}{3}\)    =>    a < \(\dfrac{4}{3}\)  (2) 

    From (1) and (2) 

    => b \(\le\dfrac{1}{3}\) and \(a\le\dfrac{4}{3}\)

    So the smallest value of c = \(-\dfrac{2}{3}\)

    When b\(\le\dfrac{1}{3}\) and \(a\le\dfrac{4}{3}\)

  • See question detail

    Can i do this :

    We have : \(\dfrac{4}{n}=\dfrac{1}{n}+\dfrac{3}{n}\)

    With n = 3k (k is the natural number greater than 1) , i have :

    \(\dfrac{4}{n}=\dfrac{1.\left(n+1\right)}{n.\left(n+1\right)}+\dfrac{3}{n}=\dfrac{1}{n+1}+\dfrac{1}{n.\left(n+1\right)}+\dfrac{3}{n}=\dfrac{1}{3k}+\dfrac{1}{3k.\left(3k+1\right)}+\dfrac{3}{3k}=\dfrac{1}{3k}+\dfrac{1}{9k^2+3k}+\dfrac{1}{k}\)

    With n = 3k + 1

    \(\dfrac{4}{n}=\dfrac{1}{n}+\dfrac{3}{n}=\dfrac{1}{n}+3\left(\dfrac{1}{n-1}-\dfrac{1}{n\left(n-1\right)}\right)=\dfrac{1}{n}+\dfrac{3}{n-1}-\dfrac{3}{n\left(n-1\right)}=\dfrac{1}{3k+1}+\dfrac{3}{3k}+\dfrac{-3}{3k\left(3k+1\right)}=\dfrac{1}{3k+1}+\dfrac{1}{k}+\dfrac{1}{-k\left(3k+1\right)}\)

    With n = 3k + 2

    \(\dfrac{4}{n}+\dfrac{1}{n}+\dfrac{3}{n}=\dfrac{1}{n}+3.\left(\dfrac{1}{n+1}+\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{1}{n}+\dfrac{3}{n+1}+\dfrac{3}{n\left(n+1\right)}=\dfrac{1}{3k+2}+\dfrac{1}{k+1}+\dfrac{1}{\left(3k+2\right)\left(k+1\right)}\)

    So with every n greater than 4 then 4/n can analytical 3 different fraction the form \(\dfrac{1}{n}\)

  • See question detail

    a) equal to \(\dfrac{3}{5}\) :

    \(\dfrac{6}{10};\dfrac{9}{15};\dfrac{12}{20};\dfrac{15}{25};\dfrac{18}{30}\)

    b) equal to \(\dfrac{5}{8}\) :

    \(\dfrac{10}{16};\dfrac{15}{24};\dfrac{20}{32};\dfrac{25}{40};\dfrac{30}{48}\)

    c) equal to \(\dfrac{36}{108}\):

    \(\dfrac{1}{3};\dfrac{2}{6};\dfrac{3}{9};\dfrac{4}{12};\dfrac{5}{15}\)

  • See question detail

    a) \(19:14=\dfrac{19}{14}=1\dfrac{5}{14}\)

    b) \(28:13=\dfrac{28}{13}=2\dfrac{2}{13}\)

    c) \(27:21=\dfrac{27}{21}=\dfrac{9}{7}=1\dfrac{2}{7}\)

    d) \(15:10=\dfrac{15}{10}=\dfrac{3}{2}=1\dfrac{1}{2}\)

    e) \(45:6=\dfrac{45}{6}=\dfrac{15}{2}=7\dfrac{1}{2}\)

  • See question detail

    a) \(6:9=\dfrac{6}{9}=\dfrac{2}{3}\)

    b) \(7:4=\dfrac{7}{4}\)​

    c) \(12:5=\dfrac{12}{5}\)

    d) \(9:19=\dfrac{9}{19}\)

    e) \(7:13=\dfrac{7}{13}\)

  • See question detail

    The edge length of the cube is :

    \(\sqrt[3]{216}\) = 6 (cm) because 6 x 6 x 6 = 216 

    The area is :

    6 x 6 = 36 (cm2)

  • See question detail

    The female students is :

    \(60x\dfrac{3}{5}=36\)(students)

    The male student is :

    60 - 36 = 24(students)

  • See question detail

    Ohhh , these answer are very similar , are you copy them together ???

  • See question detail

    We have :

    -20 = -20 

    16 - 36 = 25 - 45 

    (2 + 2)2 - (2 + 2).9 = 52 - (5 x 9)

    (2 + 2)2 - 2(2 + 2)\(\dfrac{9}{2}\) = 52 - (2 x5 x \(\dfrac{9}{2}\)) (nhân 2 và chia 2)

    (2 + 2)2 - 2(2 + 2)\(\dfrac{9}{2}\) + (\(\dfrac{9}{2}\))2 = 52 - (2 x5 x \(\dfrac{9}{2}\)) + (\(\dfrac{9}{2}\))2(cộng thêm (9/2)^2 vào hai vế)

    Hai vế của phương trình trên đều ở dạng (a2 - 2ab + b2)

    (2 + 2 - \(\dfrac{9}{2}\))2 = (5 - \(\dfrac{9}{2}\)) 2 (vì a2 - 2ab + 2 = (a - b)2)

    2 + 2 - ​\(\dfrac{9}{2}\)​ = 5 - \(\dfrac{9}{2}\)

    2 + 2 = 5 (điều cần chứng minh).

  • First
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM