-
See question detail
Let \(\left\{{}\begin{matrix}V_1=4\\V_2=20\end{matrix}\right.\) (km/h)
We got this :
\(S=V.t\) (with t is the time , S is the length of roads and V is the speed)
\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{S}{V_1}\\t_2=\dfrac{S}{V_2}\end{matrix}\right.\)
From the topic :
\(t_1=t_2+24\) (minute)
\(\Leftrightarrow\dfrac{S}{V_1}=\dfrac{S}{V_2}+24\)
\(\Leftrightarrow\dfrac{S}{4}=\dfrac{S}{20}+24\)
\(\Leftrightarrow\dfrac{S}{4}=\dfrac{S+24.20}{20}\)
<=> 20S = 4S + 4.20.24
<=> 16S = 4.20.24
<=> S = 120 (km)
So , there are 20 kilometres do you live from the station .
-
See question detail
A = 5 + 52 + 53 + .................. + 52012
A = (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) + ................... + (52009 + 52010 + 52011 + 52012)
A = (5 + 25 + 125 + 625) + 54.(5 + 25 + 125 + 625) + ....................... + 52008.(5 + 25 + 125 + 625)
A = 780.1 + 54.780 + ......................... + 52008.780
A = 780.(1 + 54 + ......................... + 52008)
A = 12.65.(......................)
=> A \(⋮\) 65
-
See question detail
1. Assume that \(\sqrt{2}\) is a rational number. That means there exist two integers a and b such that a / b = \(\sqrt{2}\)
2. So it can be written as a fractional fraction (a fraction that can not be reduced again): a / b with a, b is two primes together and (a / b)2 = 2.
3. From (2) denotes a2 / b2 = 2 and a2 = 2.b2.
4. Then a2 is even because it is equal to 2.b2 (obviously even)
5. From this inference, a must be an even number because a2 is the even number of digits (odd numbers are square rooted as odd, even square digits have square root).
6. Since a is even, there are some k satisfactions: a = 2k.
7. Substitution (6) into (3) we have: (2k)2 = 2b2 <=> 4k2 = 2b2 <=> 2k2 = b2.
8. Because 2k2 = b2 where 2k2 is even, then b2 is even, this inference b is also even [reason similar to (5)].
9. From (5) and (8) we have: a and b are even numbers, which contradicts the assumption that a / b is the minimal number in (2).
From the contradiction inference: \(\sqrt{2}\) is a rational number that is false and must conclude. \(\sqrt{2}\) is an irrational number. -
See question detail
9 just after 8
7 just before 8
-
See question detail
A = x2 - 5x - 2xy + 5y + y2 + 4
A = (x2 - 2xy + y2) - (5x - 5y) + 4
A = (x - y)2 - 5(x - y) + 4
A = 12 - 5.1 + 4
A = 1 - 5 + 4
A = 0
-
See question detail
Apply AM-GM inequality for 2 numbers , we have :
\(\dfrac{a^3}{b}+ab\ge2.\sqrt{\dfrac{a^3}{b}.ab}=2a^2\)
\(\dfrac{b^3}{c}+bc\ge2.\sqrt{\dfrac{b^3}{c}.bc}=2b^2\)
\(\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{c^3}{a}.ca}=2c^2\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\)
In another case , we have this :
\(a^2+b^2+c^2\ge ab+bc+ca\) (The consequence of AM-GM)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2ab+2bc+2ca\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
-
See question detail
We have :
\(x^2-2x+5=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\)
\(\Rightarrow H=\dfrac{1}{x^2-2x+5}\le\dfrac{1}{4}\)
\(\Rightarrow Max_H=\dfrac{1}{4}\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
-
See question detail
We have :
\(\left(x-1\right)^4=\left(x-1\right)^6\)
\(\Rightarrow\left(x-1\right)^6-\left(x-1\right)^4=0\)
\(\left(x-1\right)^4.\left[\left(x-1\right)^2-1\right]=0\)
So \(\left(x-1\right)^4=0\) or \(\left(x-1\right)^2-1=0\)
\(\Leftrightarrow x-1=0\) or \(\left(x-1\right)^2=1\)
\(\Leftrightarrow x=1\) or \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
So , x = {0,1,2}
-
See question detail
A = (x2 + y2)3 + (z2 - x2)3 - (y2 + z2)3
A = [(x2 + y2) + (z2 - x)2]3 + 3.(x2 + y2).(z2 - x2).(x2 + y2 + z2 - x2) - (y2 + z2)3
A = (y2 + z2)3 + 3.(x2 + y2).(x + z)(z - x).(y2 + z2) - (y2 + z2)3
A = 3.(x2 + y2).(x + z)(z - x).(y2 + z2)
-
See question detail
We have :
M = 2(a3 + b3) - 3(a2 + b2)
M = 2.(a + b).(a2 - ab + b2) - 3.[(a + b)2 - 2ab]
M = 2(a2 - ab + b2) - 3.1 + 3.2ab
M = 2a2 - 2ab + 2b2 - 3 + 6ab
M = 2a2 + 4ab + 2b2 - 3
M = 2.(a2 + 2ab + b2) - 3
M = 2.(a + b)2 - 3
M = 2 - 3 = -1
-
See question detail
We have :
a3 + b3 + c3 = 3abc
a3 + b3 + c3 - 3abc = 0
(a3 + 3a2b + 3ab2 + b3) + c3 - 3a2b - 3ab2 - 3abc = 0
(a + b)3 + c3 - 3ab.(a + b + c) = 0
[(a + b) + c].[(a + b)2 - c.(a + b) + c2] - 3ab(a + b + c) = 0
(a + b + c).[a2 + 2ab + b2 - ac - bc + c2] - 3ab(a + b + c) = 0
(a + b + c).[a2 + b2 + c2 - bc - ca + 2ab - 3ab] = 0
(a + b + c).[a2 + b2 + c2 - ab - bc - ca] = 0
That is right , because a + b + c = 0
So a3 + b3 + c3 = 3abc
With a + b + c = 0
-
See question detail
Ok , Do it , I support :v
-
See question detail
\(S=1-2+3-4+....+2009-2010\)
Denote :
\(S'=1+3+.....+2009\) ; \(S"=-2-4-....-2010=-\left(2+4+....+2010\right)\)
We have :
\(S'=\dfrac{\left[\left(2009-1\right):2+1\right].\left(2009+1\right)}{2}=\dfrac{1005.2010}{2}=1005^2\)
\(S"=-\dfrac{\left[\left(2010-2\right):2+1\right].\left(2010+2\right)}{2}=-\dfrac{1005.2012}{2}=-1005.1006\)
So :
\(S=S'+S"=1005^2-1005.1006=1005.\left(1005-1006\right)=-1005\)
-
See question detail
a) \(A=5+5^2+5^3+....+5^{100}\)
\(5A=5^2+5^3+....+5^{100}+5^{101}\)
\(5A-A=\left(5^2+5^3+5^4+......+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)
\(4A=5^{101}-5\)
\(A=\dfrac{5^{101}-5}{4}\)
b) \(A=5+5^2+5^3+....+5^{100}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\)
\(A=\left(5+25\right)+5^2.\left(5+25\right)+....+5^{98}.\left(5+25\right)\)
\(A=30+5^2.30+.....+5^{98}.30\)
\(A=30.\left(1+5^2+....+5^{98}\right)⋮30\)
\(\Rightarrow A⋮30\)
-
See question detail
Phan Thanh Tinh :3 i know that , so , what are you going to do :v , "WHAT ARE YOU GOING TO DO ?"
-
See question detail
Phan Thanh Tinh : may be from that :v
-
See question detail
:v , This web is just starts in few months , so you should not demanding too much ~
-
See question detail
I am agree :v
-
See question detail
Let \(A=\dfrac{a^3+b^3+c^3+d^3}{a+b+c+d}\)
\(A=\dfrac{a^3}{a+b+c+d}+\dfrac{b^3}{a+b+c+d}+\dfrac{c^3}{a+b+c+d}+\dfrac{d^3}{a+b+c+d}\)
\(A=\dfrac{a^4}{a^2+ab+ac+ad}+\dfrac{b^4}{ab+b^2+bc+bd}+\dfrac{c^4}{ac+bc+c^2+cd}+\dfrac{d^4}{ad+bd+cd+d^2}\)
Following Schwarz's inequality , we have :
\(A\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)}=\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{\left(a+b+c+d\right)^2}\)
Following Bunyakovsky's inequality , we have :
\(\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow A\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{4\left(a^2+b^2+c^2+d^2\right)}=\dfrac{a^2+b^2+c^2+d^2}{4}\ge\dfrac{4\sqrt[4]{a^2b^2c^2d^2}}{4}=\dfrac{4.1}{4}=1\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge a+b+c+d\)
Equality occurs when :
a = b = c = d = 1
-
See question detail
10x(x - y) + 8y(y - x)
= 10x2 - 10xy + 8y2 - 8xy
= 10x2 - 18xy + 8y2
= 2.(5x2 - 9xy + 4y2)
= 2.(4x2 + x2 - 2.2x.2y - xy + 4y2)
= 2.[(4x2 - 2.2x.2y + 4y2) + x2 - xy]
= 2.[ (2x - 2y)2 + x(x - y)]
= 2.[ 4.(x - y)2 + x(x - y)]
= 2.(x - y).[4.(x - y) + x]
= 2.(x - y).[5x - y]