MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    Let \(\left\{{}\begin{matrix}V_1=4\\V_2=20\end{matrix}\right.\) (km/h)  

    We got this :

    \(S=V.t\) (with t is the time , S is the length of roads and V is the speed)

    \(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{S}{V_1}\\t_2=\dfrac{S}{V_2}\end{matrix}\right.\)

    From the topic :

    \(t_1=t_2+24\)  (minute)

    \(\Leftrightarrow\dfrac{S}{V_1}=\dfrac{S}{V_2}+24\)

    \(\Leftrightarrow\dfrac{S}{4}=\dfrac{S}{20}+24\)

    \(\Leftrightarrow\dfrac{S}{4}=\dfrac{S+24.20}{20}\)

    <=> 20S = 4S + 4.20.24

    <=> 16S = 4.20.24

    <=> S = 120 (km)

    So , there are 20 kilometres do you live from the station . 

  • See question detail

    A = 5 + 52 + 53 + .................. + 52012

    A = (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) + ................... + (52009 + 52010 + 52011 + 52012)

    A = (5 + 25 + 125 + 625) + 54.(5 + 25 + 125 + 625) + ....................... + 52008.(5 + 25 + 125 + 625)

    A = 780.1 + 54.780 + ......................... + 52008.780

    A = 780.(1 + 54 + ......................... + 52008)

    A = 12.65.(......................)

    => A \(⋮\) 65

  • See question detail

    1. Assume that \(\sqrt{2}\) is a rational number. That means there exist two integers a and b such that a / b =  \(\sqrt{2}\) 
    2. So it can be written as a fractional fraction (a fraction that can not be reduced again): a / b with a, b is two primes together and (a / b)2 = 2.
    3. From (2) denotes a2 / b2 = 2 and a2 = 2.b2.
    4. Then a2 is even because it is equal to 2.b2 (obviously even)
    5. From this inference, a must be an even number because a2 is the even number of digits (odd numbers are square rooted as odd, even square digits have square root).
    6. Since a is even, there are some k satisfactions: a = 2k.
    7. Substitution (6) into (3) we have: (2k)2 = 2b2 <=> 4k2 = 2b2 <=> 2k2 = b2.
    8. Because 2k2 = b2 where 2k2 is even, then b2 is even, this inference b is also even [reason similar to (5)].
    9. From (5) and (8) we have: a and b are even numbers, which contradicts the assumption that a / b is the minimal number in (2).
    From the contradiction inference:  \(\sqrt{2}\)  is a rational number that is false and must conclude. \(\sqrt{2}\)  is an irrational number.

  • See question detail

    9 just after 8

    7 just before 8 

  • See question detail

    A = x2 - 5x - 2xy + 5y + y2 + 4

    A = (x2 - 2xy + y2) - (5x - 5y) + 4

    A = (x - y)2 - 5(x - y) + 4

    A = 12 - 5.1 + 4

    A = 1 - 5 + 4

    A = 0 

  • See question detail

    Apply AM-GM inequality for 2 numbers , we have :

    \(\dfrac{a^3}{b}+ab\ge2.\sqrt{\dfrac{a^3}{b}.ab}=2a^2\)

    \(\dfrac{b^3}{c}+bc\ge2.\sqrt{\dfrac{b^3}{c}.bc}=2b^2\)

    \(\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{c^3}{a}.ca}=2c^2\)

    \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\)

    In another case , we have this :

    \(a^2+b^2+c^2\ge ab+bc+ca\) (The consequence of AM-GM)

    \(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

    \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2ab+2bc+2ca\)

    \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

  • See question detail

    We have :

    \(x^2-2x+5=x^2-2x+1+4\)

                          \(=\left(x-1\right)^2+4\ge4\)

    \(\Rightarrow H=\dfrac{1}{x^2-2x+5}\le\dfrac{1}{4}\)

    \(\Rightarrow Max_H=\dfrac{1}{4}\)

    \(\Leftrightarrow\left(x-1\right)^2=0\)

    \(\Leftrightarrow x=1\)

  • See question detail

    We have :

    \(\left(x-1\right)^4=\left(x-1\right)^6\)

    \(\Rightarrow\left(x-1\right)^6-\left(x-1\right)^4=0\)

    \(\left(x-1\right)^4.\left[\left(x-1\right)^2-1\right]=0\)

    So \(\left(x-1\right)^4=0\)           or          \(\left(x-1\right)^2-1=0\)

    \(\Leftrightarrow x-1=0\)                or           \(\left(x-1\right)^2=1\)

    \(\Leftrightarrow x=1\)                       or            \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

    So , x = {0,1,2}

  • See question detail

    A = (x2 + y2)3 + (z2 - x2)3 - (y2 + z2)3

    A = [(x2 + y2) + (z2 - x)2]3 + 3.(x2 + y2).(z2 - x2).(x2 + y2 + z2 - x2) - (y2 + z2)3

    A = (y2 + z2)3 + 3.(x2 + y2).(x + z)(z - x).(y2 + z2) - (y2 + z2)3

    A = 3.(x2 + y2).(x + z)(z - x).(y2 + z2) 

  • See question detail

    We have :

    M = 2(a3 + b3) - 3(a2 + b2)

    M = 2.(a + b).(a2 - ab + b2) - 3.[(a + b)2 - 2ab]

    M = 2(a2 - ab + b2) - 3.1 + 3.2ab

    M = 2a2 - 2ab + 2b2 - 3 + 6ab

    M = 2a2 + 4ab + 2b2 - 3

    M = 2.(a2 + 2ab + b2) - 3

    M = 2.(a + b)2 - 3

    M = 2 - 3 = -1 

  • See question detail

    We have :

    a3 + b3 + c3 = 3abc 

    a3 + b3 + c3 - 3abc = 0

    (a3 + 3a2b + 3ab2 + b3) + c3 - 3a2b - 3ab2 - 3abc = 0

    (a + b)3 + c3 - 3ab.(a + b + c) = 0

    [(a + b) + c].[(a + b)2 - c.(a + b) + c2] - 3ab(a + b + c) = 0

    (a + b + c).[a2 + 2ab + b2 - ac - bc + c2] - 3ab(a + b + c) = 0

    (a + b + c).[a2 + b2 + c2 - bc - ca + 2ab - 3ab] = 0

    (a + b + c).[a2 + b2 + c2 - ab - bc - ca] = 0

    That is right , because a + b + c = 0

    So a3 + b3 + c3 = 3abc

    With a + b + c = 0

  • See question detail

    Ok , Do it , I support :v 

  • See question detail

    \(S=1-2+3-4+....+2009-2010\)

    Denote :

    \(S'=1+3+.....+2009\) ; \(S"=-2-4-....-2010=-\left(2+4+....+2010\right)\)

    We have :

    \(S'=\dfrac{\left[\left(2009-1\right):2+1\right].\left(2009+1\right)}{2}=\dfrac{1005.2010}{2}=1005^2\)

    \(S"=-\dfrac{\left[\left(2010-2\right):2+1\right].\left(2010+2\right)}{2}=-\dfrac{1005.2012}{2}=-1005.1006\)

    So :

    \(S=S'+S"=1005^2-1005.1006=1005.\left(1005-1006\right)=-1005\)

  • See question detail

    a) \(A=5+5^2+5^3+....+5^{100}\)

    \(5A=5^2+5^3+....+5^{100}+5^{101}\)

    \(5A-A=\left(5^2+5^3+5^4+......+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)

    \(4A=5^{101}-5\)

    \(A=\dfrac{5^{101}-5}{4}\)

    b) \(A=5+5^2+5^3+....+5^{100}\)

    \(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\)

    \(A=\left(5+25\right)+5^2.\left(5+25\right)+....+5^{98}.\left(5+25\right)\)

    \(A=30+5^2.30+.....+5^{98}.30\)

    \(A=30.\left(1+5^2+....+5^{98}\right)⋮30\)

    \(\Rightarrow A⋮30\)

  • See question detail

    Phan Thanh Tinh :3 i know that , so , what are you going to do :v , "WHAT ARE YOU GOING TO DO ?"

  • See question detail

    Phan Thanh Tinh : may be from that :v 

  • See question detail

    :v , This web is just starts in few months , so you should not demanding too much ~ 

  • See question detail

    I am agree :v 

  • See question detail

    Let \(A=\dfrac{a^3+b^3+c^3+d^3}{a+b+c+d}\)

    \(A=\dfrac{a^3}{a+b+c+d}+\dfrac{b^3}{a+b+c+d}+\dfrac{c^3}{a+b+c+d}+\dfrac{d^3}{a+b+c+d}\)

    \(A=\dfrac{a^4}{a^2+ab+ac+ad}+\dfrac{b^4}{ab+b^2+bc+bd}+\dfrac{c^4}{ac+bc+c^2+cd}+\dfrac{d^4}{ad+bd+cd+d^2}\)

    Following Schwarz's inequality , we have :

    \(A\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)}=\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{\left(a+b+c+d\right)^2}\)

    Following Bunyakovsky's inequality , we have :

    \(\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\ge\left(a+b+c+d\right)^2\)

    \(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

    \(\Rightarrow A\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{4\left(a^2+b^2+c^2+d^2\right)}=\dfrac{a^2+b^2+c^2+d^2}{4}\ge\dfrac{4\sqrt[4]{a^2b^2c^2d^2}}{4}=\dfrac{4.1}{4}=1\)

    \(\Rightarrow a^3+b^3+c^3+d^3\ge a+b+c+d\)

    Equality occurs when :

    a = b = c = d = 1

  • See question detail

    10x(x - y) + 8y(y - x)

    = 10x2 - 10xy + 8y2 - 8xy

    = 10x2 - 18xy + 8y2

    = 2.(5x2 - 9xy + 4y2)

    = 2.(4x2 + x2 - 2.2x.2y - xy + 4y2)

    = 2.[(4x2 - 2.2x.2y + 4y2) + x2 - xy]

    = 2.[ (2x - 2y)2  + x(x - y)]

    = 2.[ 4.(x - y)2 + x(x - y)]

    = 2.(x - y).[4.(x - y) + x]

    = 2.(x - y).[5x - y]

  • First
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM