MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    1 + 3 + .... + 1000 = (1 + 3 + 5 + ..... + 999) + 1000

    Apply the formula to calculator the total number , we have :

    \(\dfrac{\left[\left(999-1\right):2+1\right].\left(999+1\right)}{2}=\dfrac{550.1000}{2}=550.500=275000\)

    => 275000 + 1000 = 276000

  • See question detail

    (x + 2).(x + 2) = 24

    (x + 2)2 = 24

    \(\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{24}\\x+2=-\sqrt{24}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{24}-2\\x=-\sqrt{24}-2\end{matrix}\right.\)

    So x = \(\sqrt{24}-2\) or x = \(-\sqrt{24}-2\)

  • See question detail

    a) With 2x + 3 = x + 2

    => 2x - x = 2 - 3

    => x = -1

    With 2x + 3 = -(x + 2)

    => 2x + 3 = -x - 2

    => 2x + x = -2 - 3

    => 3x = -5

    => x = \(\dfrac{-5}{3}\)

    So x = -1 and x = \(\dfrac{-5}{3}\)

    b) We have : 

    A = |x - 2006| + |2007 - x| \(\ge\) |x - 2006 + 2007 - x| = |1| = 1

    \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-2006\right|\le0\\\left|2007-x\right|\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2006\\x=2007\end{matrix}\right.\)

    So when x = 2006 ; 2007 then value of A smallest 

  • See question detail

    We have :

    x < -0.8 \(\Rightarrow\) x + 0,8 < 0 \(\Rightarrow\)|x + 0.8| = -(x + 0.8)

    x < -0.8 \(\Rightarrow\) x < 25 \(\Rightarrow\) |x - 25| = 25 - x

    \(\Rightarrow\) A = -(x + 0.8) - (25 - x) + 1.9

         A = -x - 0.8 - 25 + x + 1.9

         A = -23.9 

  • See question detail

    We have : 

    \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

    \(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

    \(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

    +> If a + b + c + d \(\ne0\)

    => a = b = c = d (Because the same of namerator)

    => M = 1 + 1 + 1 + 1 = 4

    +> If a + b + c + d = 0

    => a + b = -(c + d)

          b + c = -(a + d)

          c + d = -(a + b)

          a + d = -(b + c)

    Change this into M , we have :

    \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

    \(M=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{-\left(a+d\right)}{a+d}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{-\left(b+c\right)}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

    So M = 4 and M = -4

  • See question detail

    We have : 

    \(\dfrac{bt-cn}{a}=\dfrac{cm-at}{b}=\dfrac{an-bm}{c}\)

    \(\Rightarrow\dfrac{a\left(bt-cn\right)}{a^2}=\dfrac{b\left(cm-at\right)}{b^2}=\dfrac{c\left(an-bm\right)}{c^2}\)

    \(\Rightarrow\dfrac{abt-acn}{a^2}=\dfrac{bcm-bat}{b^2}=\dfrac{acn-bcm}{c^2}=\dfrac{abt-acn+bcm-bat+acn-bcm}{a^2+b^2+c^2}=0\)

    \(\Rightarrow\left\{{}\begin{matrix}bt-cn=0\\cm-at=0\\an-bm=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}bt=cn\Rightarrow\dfrac{n}{b}=\dfrac{t}{c}\\cm=at\Rightarrow\dfrac{t}{c}=\dfrac{m}{a}\\an=bm\Rightarrow\dfrac{m}{a}=\dfrac{n}{b}\end{matrix}\right.\)

    \(\Rightarrow\dfrac{m}{a}=\dfrac{n}{b}=\dfrac{t}{c}\)

  • See question detail

    Give : \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)

    \(\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)

    Change x,y,z into 5z - 3x - 4y = 50 , we have :

    5(6k + 5) - 3(2k + 1) - 4(4k - 3) = 50

    30k + 25 - 6k - 3 - 16k + 12 = 50 

    8k + 34 = 50

    8k = 16

    => k = 2

    \(\Rightarrow\left\{{}\begin{matrix}x=2k+1=2.2+1=5\\y=4k-3=4.2-3=5\\z=6k+5=6.2+5=17\end{matrix}\right.\)

  • See question detail

    M A B C D E X

    My drawing is not accurate ha ! ^ ^ Sorry about that !

    Draw BX parallel to AC

    => \(\widehat{BXE}=\widehat{CEX}\)

    Consider \(\Delta BMX\) and \(\Delta CEM\) , we have :

    BM = CM

    \(\widehat{BMX}=\widehat{CME}\)  => \(\Delta BMX\) = \(\Delta CEM\)

    \(\widehat{BXE}=\widehat{CEX}\)

    Consider \(\Delta AHD\) and \(\Delta AHE\) , we have :

    \(\widehat{DAH}=\widehat{CAH}\)

    AH general                     => \(\Delta AHD\) = \(\Delta AHE\)

    \(\widehat{AHD}=\widehat{AHE}=90^0\)

    => \(\widehat{ADE}=\widehat{AED}\)

    But \(\widehat{AED}=\widehat{BXD}\)

    => \(\widehat{ADE}=\widehat{BXD}\)

    =>\(\Delta\)BDX  isosceles 

    => BD = BX

    But BX = CE

    => BD = CE

  • See question detail

    you lost the very important rules , i don't want to talk to you anymore .

  • See question detail

    If you say i am wrong about 2017 , i agree , but about you , from where do you have \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\) 

  • See question detail

    About what , show me !Love the Name of Jiang

  • See question detail

    Love the Name of Jiang . Stop rewrite my anwser , you will be bad if you still do that !

  • See question detail

    Applying the same sequence properties, we have

    \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

    \(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

    Change a = b = c , i have :

    a + b + c = a + a + a = 2017 

    => 3a = 2017

    => \(a=\dfrac{2017}{3}\)

    => \(a=b=c=\dfrac{2017}{3}\)

  • See question detail

    You are so funny Love the Name of Jiang ha !

  • See question detail

    After three hours , the length of the car start from A can go :

    40 x 3 = 120 (km)

    After three hours , the length of the car start from B can go :

    45 x 3 = 135 (km)

    The length of the street is :

    120 + 135 = 255 (km)

  • See question detail

    x + x2 + x3 + ..... + x100 with x = 1

    => 1 + 12 + 13 + .... + 1100

    => 1 + 1 + 1 + .... + 1 (100 number)

    => 1 x 100 = 100 

    => x + x2 + x3 + ..... + x100 = 100

  • See question detail

    Call the long bottom is a

                  short bottom is b 

    We have :

    \(S=\left(\dfrac{a+b}{2}\right).9=86.4cm^2\) and b = \(\dfrac{1}{2}a\)

    Change b to S , we have :

    \(\dfrac{a+\dfrac{1}{2}a}{2}.9=86.4\)

    \(\dfrac{\dfrac{3}{2}a}{2}=9.6\)

    \(\dfrac{3}{2}a.\dfrac{1}{2}=\dfrac{3}{4}a=9.6\)

    \(\Rightarrow a=12.8\)

    => b = 6.4

  • See question detail

    \(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab+ac}{b^2+bc}\)

    \(\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab+bc}{b^2+bc}\)

    In here , we have :

    b2 + bc = b2 + bc

    ab = ab

    If a>b

    => ac > bc (when a,b \(\in N\))

    => \(\dfrac{a}{b}>\dfrac{a+c}{b+c}\)

    If a<b

    => ac < bc (when a,b \(\in N\))

    => \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

  • See question detail

    There aren't enough condition !

  • See question detail

    Give A = 22 + 24 + .... + 2100

    4A = 24 + .... + 2100 + 2102

    4A - A = (24 + .... + 2100 + 2102) - (22 + 24 + .... + 2100)

    3A = 2102 - 22

    A = \(\dfrac{2^{102}-4}{3}\)

  • First
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM