-
See question detail
1 + 3 + .... + 1000 = (1 + 3 + 5 + ..... + 999) + 1000
Apply the formula to calculator the total number , we have :
\(\dfrac{\left[\left(999-1\right):2+1\right].\left(999+1\right)}{2}=\dfrac{550.1000}{2}=550.500=275000\)
=> 275000 + 1000 = 276000
-
See question detail
(x + 2).(x + 2) = 24
(x + 2)2 = 24
\(\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{24}\\x+2=-\sqrt{24}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{24}-2\\x=-\sqrt{24}-2\end{matrix}\right.\)
So x = \(\sqrt{24}-2\) or x = \(-\sqrt{24}-2\)
-
See question detail
a) With 2x + 3 = x + 2
=> 2x - x = 2 - 3
=> x = -1
With 2x + 3 = -(x + 2)
=> 2x + 3 = -x - 2
=> 2x + x = -2 - 3
=> 3x = -5
=> x = \(\dfrac{-5}{3}\)
So x = -1 and x = \(\dfrac{-5}{3}\)
b) We have :
A = |x - 2006| + |2007 - x| \(\ge\) |x - 2006 + 2007 - x| = |1| = 1
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-2006\right|\le0\\\left|2007-x\right|\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2006\\x=2007\end{matrix}\right.\)
So when x = 2006 ; 2007 then value of A smallest
-
See question detail
We have :
x < -0.8 \(\Rightarrow\) x + 0,8 < 0 \(\Rightarrow\)|x + 0.8| = -(x + 0.8)
x < -0.8 \(\Rightarrow\) x < 25 \(\Rightarrow\) |x - 25| = 25 - x
\(\Rightarrow\) A = -(x + 0.8) - (25 - x) + 1.9
A = -x - 0.8 - 25 + x + 1.9
A = -23.9
-
See question detail
We have :
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
+> If a + b + c + d \(\ne0\)
=> a = b = c = d (Because the same of namerator)
=> M = 1 + 1 + 1 + 1 = 4
+> If a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
c + d = -(a + b)
a + d = -(b + c)
Change this into M , we have :
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)
\(M=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{-\left(a+d\right)}{a+d}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{-\left(b+c\right)}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
So M = 4 and M = -4
-
See question detail
We have :
\(\dfrac{bt-cn}{a}=\dfrac{cm-at}{b}=\dfrac{an-bm}{c}\)
\(\Rightarrow\dfrac{a\left(bt-cn\right)}{a^2}=\dfrac{b\left(cm-at\right)}{b^2}=\dfrac{c\left(an-bm\right)}{c^2}\)
\(\Rightarrow\dfrac{abt-acn}{a^2}=\dfrac{bcm-bat}{b^2}=\dfrac{acn-bcm}{c^2}=\dfrac{abt-acn+bcm-bat+acn-bcm}{a^2+b^2+c^2}=0\)
\(\Rightarrow\left\{{}\begin{matrix}bt-cn=0\\cm-at=0\\an-bm=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}bt=cn\Rightarrow\dfrac{n}{b}=\dfrac{t}{c}\\cm=at\Rightarrow\dfrac{t}{c}=\dfrac{m}{a}\\an=bm\Rightarrow\dfrac{m}{a}=\dfrac{n}{b}\end{matrix}\right.\)
\(\Rightarrow\dfrac{m}{a}=\dfrac{n}{b}=\dfrac{t}{c}\)
-
See question detail
Give : \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Change x,y,z into 5z - 3x - 4y = 50 , we have :
5(6k + 5) - 3(2k + 1) - 4(4k - 3) = 50
30k + 25 - 6k - 3 - 16k + 12 = 50
8k + 34 = 50
8k = 16
=> k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=2k+1=2.2+1=5\\y=4k-3=4.2-3=5\\z=6k+5=6.2+5=17\end{matrix}\right.\)
-
See question detail
My drawing is not accurate ha ! ^ ^ Sorry about that !
Draw BX parallel to AC
=> \(\widehat{BXE}=\widehat{CEX}\)
Consider \(\Delta BMX\) and \(\Delta CEM\) , we have :
BM = CM
\(\widehat{BMX}=\widehat{CME}\) => \(\Delta BMX\) = \(\Delta CEM\)
\(\widehat{BXE}=\widehat{CEX}\)
Consider \(\Delta AHD\) and \(\Delta AHE\) , we have :
\(\widehat{DAH}=\widehat{CAH}\)
AH general => \(\Delta AHD\) = \(\Delta AHE\)
\(\widehat{AHD}=\widehat{AHE}=90^0\)
=> \(\widehat{ADE}=\widehat{AED}\)
But \(\widehat{AED}=\widehat{BXD}\)
=> \(\widehat{ADE}=\widehat{BXD}\)
=>\(\Delta\)BDX isosceles
=> BD = BX
But BX = CE
=> BD = CE
-
See question detail
you lost the very important rules , i don't want to talk to you anymore .
-
See question detail
If you say i am wrong about 2017 , i agree , but about you , from where do you have \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
-
See question detail
About what , show me !Love the Name of Jiang
-
See question detail
Love the Name of Jiang . Stop rewrite my anwser , you will be bad if you still do that !
-
See question detail
Applying the same sequence properties, we have
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Change a = b = c , i have :
a + b + c = a + a + a = 2017
=> 3a = 2017
=> \(a=\dfrac{2017}{3}\)
=> \(a=b=c=\dfrac{2017}{3}\)
-
See question detail
You are so funny Love the Name of Jiang ha !
-
See question detail
After three hours , the length of the car start from A can go :
40 x 3 = 120 (km)
After three hours , the length of the car start from B can go :
45 x 3 = 135 (km)
The length of the street is :
120 + 135 = 255 (km)
-
See question detail
x + x2 + x3 + ..... + x100 with x = 1
=> 1 + 12 + 13 + .... + 1100
=> 1 + 1 + 1 + .... + 1 (100 number)
=> 1 x 100 = 100
=> x + x2 + x3 + ..... + x100 = 100
-
See question detail
Call the long bottom is a
short bottom is b
We have :
\(S=\left(\dfrac{a+b}{2}\right).9=86.4cm^2\) and b = \(\dfrac{1}{2}a\)
Change b to S , we have :
\(\dfrac{a+\dfrac{1}{2}a}{2}.9=86.4\)
\(\dfrac{\dfrac{3}{2}a}{2}=9.6\)
\(\dfrac{3}{2}a.\dfrac{1}{2}=\dfrac{3}{4}a=9.6\)
\(\Rightarrow a=12.8\)
=> b = 6.4
-
See question detail
\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab+ac}{b^2+bc}\)
\(\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab+bc}{b^2+bc}\)
In here , we have :
b2 + bc = b2 + bc
ab = ab
If a>b
=> ac > bc (when a,b \(\in N\))
=> \(\dfrac{a}{b}>\dfrac{a+c}{b+c}\)
If a<b
=> ac < bc (when a,b \(\in N\))
=> \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
-
See question detail
There aren't enough condition !
-
See question detail
Give A = 22 + 24 + .... + 2100
4A = 24 + .... + 2100 + 2102
4A - A = (24 + .... + 2100 + 2102) - (22 + 24 + .... + 2100)
3A = 2102 - 22
A = \(\dfrac{2^{102}-4}{3}\)