-
See question detail
a) 23 = 2x
<=> \(\dfrac{2^3}{2^x}=1\)
<=> 23 - x = 1
<=> 3 - x = 0
<=> x = 3
b) 25 = 5x
<=> 52 = 5x
=> x = 2
c) 32 = 2x
<=> 24 = 2x
<=> x = 4
-
See question detail
We have :
230 = (23)10 = 810 < 910 = (32)10 = 320
So 230 < 320
-
See question detail
@Macedoi , No ..... now i'm not a cheater , and up to now, I have never done.
First thing: Why do you call me a cheater ?
Be careful your mouth , It is not used to defame others .
Second thing: Do you have evidence ? Do you?
Third thing: This is a spam question , @Phan Thanh Tinh mentioned this , so you don't have to mention again.
Fourth thing: Hackers, copiers and cheaters , all of you should know that, if you go too far, your nickname will be going away with no goobye !
-
See question detail
@Macedoi , what about you , do you know :"Tự trả lời tự " in Vietnam ?
-
See question detail
Phan Huy Toàn , phanhuytien , @Help you solve math
Hey Phan Thanh Tinh , your family right , come and kick it ass off :v
-
See question detail
Ok , compare :))
We have : \(2^{332}< 2^{333}=\left(2^3\right)^{111}< \left(3^2\right)^{111}=3^{222}< 3^{223}\)
That is too difficult , right =))
-
See question detail
I don't see the picture :V :V :V
-
See question detail
a) x4 - x3 + x2 - x = 0
<=> x3.(x - 1) + x.(x - 1) = 0
<=> (x3 + x)(x - 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x^3+x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x^2+1\right)=0\\x=1\end{matrix}\right.\)
At first case , we can see :
\(x^2+1>0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b) x2 - 82 = 0
<=> (x - 8)(x + 8) = 0
<=> \(\left[{}\begin{matrix}x-8=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
c) (x + 1) + (x + 2) + (x + 3) + ...... + (x + 10) = 55
<=> 10x + (1 + 2 + ...... + 10) = 55
<=> 10x + 45 = 55
<=> 10x = 10
<=> x = 1
-
See question detail
We have the following sequence of natural numbers :
0 ; 1 ; 2 ; 3 ; ........ ; 522
Let P is the sum of odd numbers which have three-digit natural numbers , we got :
P = 101 ; 103 ; 105 ; ....... ; 521 (99 < P < 522)
Let P' is the sum of odd number which contain number 5 at last , we got :
P' = 105 ; 115 ; 125 ; ...... ; 515 (99 < P' < 522)
Apply formula to calculate number of numbers in the sequence :
P = \(\dfrac{\left(521-101\right)}{2}+1=\dfrac{420}{2}+1=210+1=211\) (numbers)
P' = \(\dfrac{\left(515-105\right)}{10}+1=\dfrac{410}{10}+1=41+1=42\) (numbers)
So, there are 211 - 42 = 169 odd numbers contain no 5
-
See question detail
a) \(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}.\dfrac{\sqrt{x}+2}{x+16}\)
\(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\dfrac{\sqrt{x}+2}{x+16}\)
\(B=\dfrac{\left(x+16\right).\left(\sqrt{x}+2\right)}{\left(x-16\right)\left(x+16\right)}=\dfrac{\sqrt{x}+2}{x-16}\)
b) B.(A - 1) = \(\dfrac{\sqrt{x}+2}{x-16}.\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)\)
\(=\dfrac{\sqrt{x}+2}{x-16}.\dfrac{2}{\sqrt{x}+2}=\dfrac{2}{x-16}\)
B(A - 1) is interger number
<=> 2 \(⋮\) x - 16
<=> x - 16 \(\in\) {1 ; -1 ; 2 ; -2}
We have this table :
x - 16 1 -1 2 -2 x 17 15 18 14 So, x = {14 ; 15 ; 17 ; 18}
-
See question detail
a) We have :
\(\left\{{}\begin{matrix}\widehat{ADH}=90^0\\\widehat{DAE}=90^0\\\widehat{AEH}=90^0\end{matrix}\right.\)
So , quadrilateral DHEA is the rectangle
=> AH = DE (2 diagonals)
It also means : OD = OH = OE = OA (with O is the intersection)
b) Consider \(\Delta ODI\) and \(\Delta OHI\) , we have :
DI = IH (DI is the median of square triagle BDH)
DO = OH
IO general
=> \(\Delta ODI\) = \(\Delta OHI\) (e - e - e)
=> \(\widehat{IDO}=90^0\Rightarrow DE\perp ID\) (1)
Similar with \(\Delta OHK\) and \(\Delta OEK\)
\(\Delta OHK\) = \(\Delta OEK\) (e - e - e)
=> \(\widehat{OEK}=90^0\Rightarrow DE\perp EK\) (2)
From (1) and (2)
=> DI // EK
-
See question detail
Source: Câu hỏi của thảobăng - Toán lớp 9 - Học toán với OnlineMath
I'm just finished ! :v
Apply Bunyakovsky , we have :
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\dfrac{9}{4}\)
\(\Rightarrow a^2+b^2+c^2\ge\dfrac{3}{4}\)
-
See question detail
We have the following diagram:
Men: |----------------------------|
Woman: |-------------| 32(people)
The number of men in group is :
\(\left(212+32\right):2=\dfrac{244}{2}=122\) (people)
So, there are 122 men in the group.
-
See question detail
We have :
\(\dfrac{n^3}{3}+\dfrac{n^3}{2}+\dfrac{n^3}{6}=\dfrac{2n^3}{6}+\dfrac{3n^3}{6}+\dfrac{n^3}{6}\)
\(=\dfrac{2n^3+3n^3+n^3}{6}=\dfrac{6n^3}{6}=n^3\)
So, we have the thing to prove :)
-
See question detail
(2x - 5)(2x + 5) = 5
\(\Leftrightarrow\left(2x\right)^2-5^2=5\)
\(\Leftrightarrow4x^2=5+25=30\)
-
See question detail
:v oh..... i'm wrong !!!
-
See question detail
Area on one face is :
\(\dfrac{96}{6}=36\left(cm^2\right)\)
The length of an edge is :
\(\sqrt{36}=6\) (cm)
The volume of the cube is :
\(V=6.6.6=6^3=216\left(cm^3\right)\)
-
See question detail
Lê Quốc Trần Anh :v , you wrong
e) \(\dfrac{x-2}{9}=\dfrac{4}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-4\end{matrix}\right.\)
-
See question detail
a) Apply the properties of the ratios are equal , we have :
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\)
Similar with b,c and d , we have :
b) \(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=....\\y=.....\end{matrix}\right.\)
c) It's wrong
d) \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=64\end{matrix}\right.\)
\(\Rightarrow x=\left[{}\begin{matrix}6\\-6\end{matrix}\right.\) and \(y=\left[{}\begin{matrix}8\\-8\end{matrix}\right.\)
-
See question detail
a // b
=> \(\widehat{aAB\: }=\widehat{bBA}\) (2 Alternate interior angles)
Because Al and Bw are bisectors of two angles corresponding .
So \(\widehat{aAl\: }=\widehat{lAB}=\widehat{ABw}=\widehat{wBb}\)
=> \(\widehat{lAB}=\widehat{ABw}\)
But two angles are 2 Alternate interior angles
=> Al // Bw