MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    a) 23 = 2x

    <=> \(\dfrac{2^3}{2^x}=1\)

    <=> 23 - x = 1

    <=> 3 - x = 0

    <=> x = 3

    b) 25 = 5x

    <=> 52 = 5x

    => x = 2

    c) 32 = 2x

    <=> 24 = 2x

    <=> x = 4

  • See question detail

    We have :

    230 = (23)10 = 810 < 910 = (32)10 = 320

    So 230 < 320

  • See question detail

    @Macedoi , No ..... now i'm not a cheater , and up to now, I have never done.

    First thing: Why do you call me a cheater ? 

    Be careful your mouth , It is not used to defame others .

    Second thing: Do you have evidence ? Do you?

    Third thing: This is a spam question , @Phan Thanh Tinh mentioned this , so you don't have to mention again. 

    Fourth thing: Hackers, copiers and cheaters , all of you should know that, if you go too far, your nickname will be going away with no goobye ! 

  • See question detail

    @Macedoi , what about you , do you know :"Tự trả lời tự " in Vietnam ? 

  • See question detail

    Phan Huy Toàn , phanhuytien , @Help you solve math 

    Hey Phan Thanh Tinh , your family right , come and kick it ass off :v 

  • See question detail

    Ok , compare :))

    We have : \(2^{332}< 2^{333}=\left(2^3\right)^{111}< \left(3^2\right)^{111}=3^{222}< 3^{223}\)

    That is too difficult , right =)) 

  • See question detail

    I don't see the picture :V :V :V 

  • See question detail

    a) x4 - x3 + x2 - x = 0

    <=> x3.(x - 1) + x.(x - 1) = 0

    <=> (x3 + x)(x - 1) = 0

    \(\Leftrightarrow\left[{}\begin{matrix}x^3+x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x^2+1\right)=0\\x=1\end{matrix}\right.\)

    At first case , we can see :

    \(x^2+1>0\)

    \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

    b) x2 - 82 = 0

    <=> (x - 8)(x + 8) = 0

    <=> \(\left[{}\begin{matrix}x-8=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

    c) (x + 1) + (x + 2) + (x + 3) + ...... + (x + 10) = 55

    <=> 10x + (1 + 2 + ...... + 10) = 55

    <=> 10x + 45 = 55

    <=> 10x = 10

    <=> x = 1 

  • See question detail

    We have the following sequence of natural numbers : 

    0 ; 1 ; 2 ; 3 ; ........ ; 522

    Let P is the sum of odd numbers which have three-digit natural numbers , we got :

    P = 101 ; 103 ; 105 ; ....... ; 521   (99 < P < 522)

    Let P' is the sum of odd number which contain number 5 at last  , we got :

    P' = 105 ; 115 ; 125 ; ...... ; 515 (99 < P' < 522)

    Apply formula to calculate number of numbers in the sequence :

    P = \(\dfrac{\left(521-101\right)}{2}+1=\dfrac{420}{2}+1=210+1=211\) (numbers)

    P' = \(\dfrac{\left(515-105\right)}{10}+1=\dfrac{410}{10}+1=41+1=42\) (numbers)

    So, there are 211 - 42 = 169 odd numbers contain no 5 

  • See question detail

    a) \(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)

    \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}.\dfrac{\sqrt{x}+2}{x+16}\)

    \(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\dfrac{\sqrt{x}+2}{x+16}\)

    \(B=\dfrac{\left(x+16\right).\left(\sqrt{x}+2\right)}{\left(x-16\right)\left(x+16\right)}=\dfrac{\sqrt{x}+2}{x-16}\)

    b) B.(A - 1) = \(\dfrac{\sqrt{x}+2}{x-16}.\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)\)

    \(=\dfrac{\sqrt{x}+2}{x-16}.\dfrac{2}{\sqrt{x}+2}=\dfrac{2}{x-16}\)

    B(A - 1) is interger number

    <=> 2 \(⋮\) x - 16

    <=> x - 16 \(\in\) {1 ; -1 ; 2 ; -2}

    We have this table :

    x - 16  1 -1 2 -2
    x 17 15 18 14

    So, x = {14 ; 15 ; 17 ; 18}

  • See question detail

    A B C H E D I K O

    a) We have :

    \(\left\{{}\begin{matrix}\widehat{ADH}=90^0\\\widehat{DAE}=90^0\\\widehat{AEH}=90^0\end{matrix}\right.\)

    So , quadrilateral DHEA is the rectangle

    => AH = DE (2 diagonals)

    It also means : OD = OH = OE = OA (with O is the intersection)

    b) Consider \(\Delta ODI\) and \(\Delta OHI\) , we have :

    DI = IH (DI is the median of square triagle BDH)

    DO = OH

    IO general 

    => \(\Delta ODI\) = \(\Delta OHI\) (e - e - e)

    => \(\widehat{IDO}=90^0\Rightarrow DE\perp ID\) (1)

    Similar with \(\Delta OHK\) and \(\Delta OEK\) 

    \(\Delta OHK\) = \(\Delta OEK\) (e - e - e)

    => \(\widehat{OEK}=90^0\Rightarrow DE\perp EK\) (2)

    From (1) and (2) 

    => DI // EK 

  • See question detail

    Source: Câu hỏi của thảobăng - Toán lớp 9 - Học toán với OnlineMath

    I'm just finished ! :v 

    Apply Bunyakovsky , we have :

    \(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

    \(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\dfrac{9}{4}\)

    \(\Rightarrow a^2+b^2+c^2\ge\dfrac{3}{4}\)

  • See question detail

    We have the following diagram:

    Men:      |----------------------------|

    Woman: |-------------| 32(people)

    The number of men in group is :

    \(\left(212+32\right):2=\dfrac{244}{2}=122\) (people)

    So, there are 122 men in the group. 

  • See question detail

    We have :

    \(\dfrac{n^3}{3}+\dfrac{n^3}{2}+\dfrac{n^3}{6}=\dfrac{2n^3}{6}+\dfrac{3n^3}{6}+\dfrac{n^3}{6}\)

    \(=\dfrac{2n^3+3n^3+n^3}{6}=\dfrac{6n^3}{6}=n^3\)

    So, we have the thing to prove :) 

  • See question detail

    (2x - 5)(2x + 5) = 5

    \(\Leftrightarrow\left(2x\right)^2-5^2=5\)

    \(\Leftrightarrow4x^2=5+25=30\)

  • See question detail

    :v oh..... i'm wrong !!! 

  • See question detail

    Area on one face is :

    \(\dfrac{96}{6}=36\left(cm^2\right)\)

    The length of an edge is :

    \(\sqrt{36}=6\) (cm)

    The volume of the cube is :

    \(V=6.6.6=6^3=216\left(cm^3\right)\)

  • See question detail

    Lê Quốc Trần Anh :v , you wrong 

    e) \(\dfrac{x-2}{9}=\dfrac{4}{x-2}\)

    \(\Leftrightarrow\left(x-2\right)^2=36\)

    \(\Leftrightarrow\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-4\end{matrix}\right.\)

  • See question detail

    a) Apply the properties of the ratios are equal , we have :

    \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)

    \(\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\)

    Similar with b,c and d , we have :

    b) \(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

    \(\Rightarrow\left\{{}\begin{matrix}x=....\\y=.....\end{matrix}\right.\)

    c) It's wrong

    d) \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

    \(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=64\end{matrix}\right.\)

    \(\Rightarrow x=\left[{}\begin{matrix}6\\-6\end{matrix}\right.\) and \(y=\left[{}\begin{matrix}8\\-8\end{matrix}\right.\)

  • See question detail

    a b c A B w l

    a // b

    => \(\widehat{aAB\: }=\widehat{bBA}\) (2 Alternate interior angles) 

    Because Al and Bw are bisectors of two angles corresponding .

    So \(\widehat{aAl\: }=\widehat{lAB}=\widehat{ABw}=\widehat{wBb}\)

    => \(\widehat{lAB}=\widehat{ABw}\)

    But two angles are 2 Alternate interior angles

    => Al // Bw 

  • First
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM