MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 272 )
  • See question detail

    We have :

    AH . BC = AB . AC (equals two \(S_{\Delta ABC}\))

    So 2.AH.BC = 2.AB.AC  (1)

    Apply Pythagoras theorem , we have :

    AB2 + AC2 = BC2  (2)

    But (AH + BC)2 = AH2 + BC2 + 2.AH.BC   (3)

    (AB + AC)2 = AB2 + AC2 + 2AB.AC   (4)

    From (1) ; (2) ; (3) ; (4) 

    => AH + BC > AB + AC

  • See question detail

    Câu hỏi của hung - Toán lớp 8 - Học toán với OnlineMath

  • See question detail

    Call the formular of numbers we need to find is \(\overline{abcd}\)

    Condition : m + k < 200 

    Following the thread, we have :

    \(\left\{{}\begin{matrix}\overline{abcd}=k^2\\\overline{\left(a+1\right)\left(b+3\right)\left(c+5\right)\left(d+3\right)}=m^2\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}\overline{abcd}=k^2\\\overline{abcd}+1353=m^2\end{matrix}\right.\)

    => m2 - k2 = 1353 

    <=> (m - k)(m + k) = 1353 = 123.11 = 41.33 

    => \(\left\{{}\begin{matrix}m+k=123\\m-k=11\end{matrix}\right.\)  or  \(\left\{{}\begin{matrix}m+k=41\\m-k=33\end{matrix}\right.\)

    => \(\left\{{}\begin{matrix}m=67\\k=56\end{matrix}\right.\)    or    \(\left\{{}\begin{matrix}m=37\\k=4\end{matrix}\right.\)

    With m = 67 ; k = 56

    => \(\left\{{}\begin{matrix}\overline{abcd}=k^2=3136\\\overline{abcd}=m^2-1353=3136\end{matrix}\right.\Rightarrow\overline{abcd}=3136\)

    With m = 37 , k = 4

    => .......... (This case is disqualified , you can solve that equation)

    So , the number we need to find is 3136 

  • See question detail

    I need another way , not that way ! 

  • See question detail

    Denote A = (x + 1)(x + 3)(x + 5)(x + 7) + 2013

                A = (x2 + 8x + 7)(x2 + 8x + 15) + 2013

                A = (x2 + 8x + 12 - 5)(x2 + 8x + 12 + 3) + 2013

    Let t = x2 + 8x + 12

    A = (t - 5)(t + 3) + 2013

    A = t2 + 3t - 5t - 15 + 2013

    A = t(t - 2) + 1998

    Because \(t\left(t-2\right)⋮x^2+8x+12\)

    => \(\dfrac{A}{x^2+8x+12}\left(surplus1998\right)\)

  • See question detail

    I had did it for a few minutes ago :v 

    a) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 15

    (x - 3)*[(x - 3)2 - (x2 + 3x + 9)] + 6(x2 + 2x + 1) = 15

    (x - 3)*[x2 - 6x + 9 - x2 - 3x - 9] + 6x2 + 12x + 6 = 15

    (x - 3)*(-9x) + 6x2 + 12x + 6 = 15

    -9x2 + 27x + 6x2 + 12x + 6 = 15

    39x - 3x2 = 9

    13x - x2 = 3

    x2 - 13x = -3

    x2 - 13x + 3 = 0

    \(x^2-2.x.\dfrac{13}{2}+\dfrac{169}{4}-\dfrac{157}{4}=0\)

    \(\left(x-\dfrac{13}{2}\right)^2=\dfrac{157}{4}\)

    \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{2}=\dfrac{\sqrt{157}}{2}\\x-\dfrac{13}{2}=\dfrac{-\sqrt{157}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13+\sqrt{157}}{2}\\x=\dfrac{13-\sqrt{157}}{2}\end{matrix}\right.\)

    b) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 3

    x(x2 - 25) - (x3 + 8) = 3

    x3 - 25x - x3 - 8 = 3

    -25x = 11

    \(x=-\dfrac{11}{25}\)

  • See question detail

    \(f\left(10\right)=3\cdot10-4=30-4=26\)

    \(g\left(-4\right)=\left(-4\right)^2-2.\left(-4\right)+5=16+8+5=29\)

    \(\Rightarrow g\left(-4\right)-f\left(10\right)=29-26=3\)

  • See question detail

    \(-\dfrac{45}{47}>-1\)

    \(\dfrac{31}{-30}\Leftrightarrow\dfrac{-31}{30}< -1\)

    => \(\dfrac{31}{-30}< \dfrac{-45}{47}\)

  • See question detail

    First note that there are only 2 ways in which Abby can sit: the left-most seat or the right-most seat. Say Abby sits on the left. Then since Bea and Jaclyn sit together, there are 4 ways to seat them. We then multiply this by 2 since Abby could also sit on the right side. Therefore there are 8 ways to seat them.

  • See question detail

    With n is the number of edges that polygon have , we have this formula to calculate the sum of interior angles :

    \(\left(n-2\right).180^0\)

    So , apply this formula into the thread , we have : 

    The sum of the degree measures of the interior angles of a regular octagon is :

    \(\left(8-2\right)\cdot180^0=1080^0\)

  • See question detail

    The number of seconds does Candace run ahead Vicky is :

    29'46'' - 28'47'' = 0'59'' <=> 59 seconds

    So ...... 

  • See question detail

    Call the point of sixth quiz is a

    Following the thread , we have :

    \(\dfrac{80+84+99+92+100+a}{6}=90\)

    <=> \(\dfrac{455+a}{6}=90\)

    <=> 455 + a = 540

    <=> a = 540 - 455

    => a = 85

  • See question detail

    10 + 20 + 30 + 40 + 50 + 60 = (1 + 2 + 3 + 4 + 5 + 6) * 10

                                                  = 21 * 10

                                                  = 210 

  • See question detail

    Call three consecutive natural numbers are n; n + 1 ; n + 2  (n \(\in\) N)

    If n divide 3 balance 0 => n = 3q (q \(\in\) N)

    => n = 3q \(⋮\) 3

    If n divide 3 balance 1 => n = 3q + 1 (q \(\in\) N)

    => n + 2 = (3q + 1) + 2 = 3q + 3 = 3(q + 1) \(⋮\) 3

    If n divide 3 balance 2 => n = 3q + 2 (q \(\in\) N)

    => n + 1 = (3q + 2) + 1 = 3q + 3 = 3(q + 1) \(⋮\) 3

    So , with three consecutive natural numbers , there is always exist a number divisible by 3 .

  • See question detail

    The perimeter of the recangle is :

    \(P=\left(12+8\right)\cdot2=20\cdot2=40\left(cm\right)\)

  • See question detail

    Câu hỏi của Phan Huy Tiến - Toán lớp 8 - Học toán với OnlineMath

    Phanhuytien , I do not need your answer anymore ! 

  • See question detail

    A B C D E F

    A is the midpoint of BD => BA = BD

    Triangle ABC isosceles at A => AB = AC

    => AB = AD = AC 

    But BD is the hypothenuse side 

    => triangle BCD right at C

    We have got 

    \(\widehat{FCE}=\widehat{AFC\:}=\widehat{AEC}=90^0\)

    => Quadrilateral AFCE is the rectangle

    => \(\widehat{EAF}=90^0\)

  • See question detail

    a) \(S_1=1+2+3+....+999=\dfrac{\left[\left(999-1\right):1+1\right].\left(999+1\right)}{2}=999.1000:2=999.500=499500\)b) \(S_2=10+12+14+...+2010\dfrac{\left[\left(2010-10\right):2+1\right].\left(2010+10\right)}{2}=1001.2020:2=1001.1010=1011010\)

  • See question detail

    D) 5 Thursday 

  • See question detail

    \(M=\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)

    \(M=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\)

    \(M=\dfrac{5}{7}.\dfrac{-7}{11}=-\dfrac{5}{11}\)

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Last
© HCEM 10.1.29.225
Crafted with by HCEM