B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
= (x2 + 9y2 - 6xy) + (4x - 12y) + x2 - 10x + 2004
= [x2 + (3y)2 - 2x.3y] + 4(x - 3y) + (x2 - 10x) + 2004
= (x - 3y)2 + 2.(x - 3y).2 + 4 + (x2 - 2x.5 + 25) + 2004 - 4 - 25
= (x - 3y + 2)2 + (x - 5)2 + 1975
We have: (x - 3y + 2)2 \(\ge0\forall x;y\); \(\left(x-5\right)^2\ge0\forall x\)
So \(\left(x-3y+2\right)^2+\left(x-5\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\forall x;y\)
or \(B\ge1975\forall x;y\)
Equal sign occurs when and only if \(\left\{{}\begin{matrix}x-3y+2=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2=3y\\x=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{3}\\x=5\end{matrix}\right.\)