MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kayasari Ryuunosuke Coordinator

25/07/2017 at 13:16
Answers
2
Follow

2. Prove that , with erery real numbers x,y so that expressions are square numbers :

a) A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4

b) B = x(x + 1)(x + 2)(x + 3) + 1 

c) C = 4x(x + y)(x + y + z)(x + z) + y2z2




    List of answers
  • ...
    Aim Egst 25/07/2017 at 18:51

    a)\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

    \(=\left(x^2+5xy+6y^2\right)\left(x^2+5xy+4y^2\right)+y^4\)

    Let \(x^2+5xy=a;y^2=b\) we have;

    \(=\left(a+6b\right)\left(a+4b\right)+b^2\)

    \(=a^2+10ab+24b^2+b^2\)

    \(=a^2+10ab+25b^2=\left(a+5b\right)^2\)

    \(=\left(x^2+5xy+5y^2\right)^2\)

    b)\(B=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

    \(=\left(x^2+3x+2\right)\left(x^2+3x\right)+1\)

    Let \(a=x^2+3x\) we have:

    \(=a\left(a+2\right)+1=a^2+2a+1\)

    \(=\left(a+1\right)^2=\left(x^2+3x+1\right)^2\)

    Done !!

  • ...
    Lufans 25/07/2017 at 17:00

    C = 4x(x + y)(x + y + z)(x + z) + y2z2

       = 4[x(x + y + z)][(x + y)(x + z)] + y2z2

       = 4(x2 + xy + xz)(x2 + xy + xz + yz) + y2z2

       = 4(x2 + xy + xz)2 + 4yz(x2 + xy + xz) + y2z2

       = [2(x2 + xy + xz)]2 + 2.2(x2 + xy + xz).yz + (yz)2

       = [2(x2 + xy + xz) + yz)]2

    We have things to prove


Post your answer

Please help Kayasari Ryuunosuke to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM