Kayasari Ryuunosuke Coordinator
25/07/2017 at 13:16-
Aim Egst 25/07/2017 at 18:51
a)\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+6y^2\right)\left(x^2+5xy+4y^2\right)+y^4\)
Let \(x^2+5xy=a;y^2=b\) we have;
\(=\left(a+6b\right)\left(a+4b\right)+b^2\)
\(=a^2+10ab+24b^2+b^2\)
\(=a^2+10ab+25b^2=\left(a+5b\right)^2\)
\(=\left(x^2+5xy+5y^2\right)^2\)
b)\(B=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+3x+2\right)\left(x^2+3x\right)+1\)
Let \(a=x^2+3x\) we have:
\(=a\left(a+2\right)+1=a^2+2a+1\)
\(=\left(a+1\right)^2=\left(x^2+3x+1\right)^2\)
Done !!
-
Lufans 25/07/2017 at 17:00
C = 4x(x + y)(x + y + z)(x + z) + y2z2
= 4[x(x + y + z)][(x + y)(x + z)] + y2z2
= 4(x2 + xy + xz)(x2 + xy + xz + yz) + y2z2
= 4(x2 + xy + xz)2 + 4yz(x2 + xy + xz) + y2z2
= [2(x2 + xy + xz)]2 + 2.2(x2 + xy + xz).yz + (yz)2
= [2(x2 + xy + xz) + yz)]2
We have things to prove