Kayasari Ryuunosuke Coordinator
20/07/2017 at 20:31-
Lufans 21/07/2017 at 20:21
x + y = 1 <=> y = 1 - x
We have: F = x2 + (1 - x)2 + (1 - x).x
= x2 + 1 + x2 - 2x + x - x2
= x2 - x + 1
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Equal signs occur when and only of \(x-\dfrac{1}{2}=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)
\(y=1-\dfrac{1}{2}=\dfrac{1}{2}\)
min A \(=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
Selected by MathYouLike -
keikoluong 20/07/2017 at 23:09
x+y=1 \(\Rightarrow\)\(x^2+2xy+y^2=1\)\(\left(1\right)\)
which \(\left(x-y\right)^2\ge0\) else \(x^2-2xy+y^2\ge0\left(2\right)\)
plus 1 and 2 we have \(2\left(x^2+y^2\right)\ge1\Rightarrow x^2+y^2\ge\dfrac{1}{2}\)
minA=\(\dfrac{1}{2}\) When and only when x = y = \(\dfrac{1}{2}\)