MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kayasari Ryuunosuke Coordinator

20/07/2017 at 20:31
Answers
2
Follow

Give x + y = 1. 

Find smallest value of F know :

F = x2 + y2 + xy 




    List of answers
  • ...
    Lufans 21/07/2017 at 20:21

    x + y = 1 <=> y = 1 - x

    We have: F = x2 + (1 - x)2 + (1 - x).x

                       = x2 + 1 + x2 - 2x + x - x2

                       = x2 - x + 1

                       \(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

    Equal signs occur when and only of \(x-\dfrac{1}{2}=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)

    \(y=1-\dfrac{1}{2}=\dfrac{1}{2}\)

    min A \(=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

    Selected by MathYouLike
  • ...
    keikoluong 20/07/2017 at 23:09

    x+y=1             \(\Rightarrow\)\(x^2+2xy+y^2=1\)\(\left(1\right)\)

    which \(\left(x-y\right)^2\ge0\)     else \(x^2-2xy+y^2\ge0\left(2\right)\)

    plus 1 and 2 we have   \(2\left(x^2+y^2\right)\ge1\Rightarrow x^2+y^2\ge\dfrac{1}{2}\)

    minA=\(\dfrac{1}{2}\)      When and only when  x = y = \(\dfrac{1}{2}\)


Post your answer

Please help Kayasari Ryuunosuke to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM