MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

26/07/2017 at 08:54
Answers
2
Follow

Given \(a,b,c>0\), prove that:
\(a^3+b^3+c^3\ge a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\).




    List of answers
  • ...
    Lufans 26/07/2017 at 15:01

    Set \(A=a^3+b^3+c^3\); \(B=a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\)

    Apply AM-GM inequality for 2 positive numbers 

    \(a^3+abc\ge2\sqrt{a^3.abc}=2a^2\sqrt{bc}\)

    \(b^3+abc\ge2\sqrt{b^3.abc}=2b^2\sqrt{ac}\)

    \(c^3+abc\ge2\sqrt{c^3.abc}=2c^2\sqrt{ab}\)

    Thence inferred \(A+3abc\ge2B\)

    Need proof: \(3abc\le A\) it mean \(3abc\le a^3+b^3+c^3\), this is always true because of the AM-GM inequality we have \(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\)

    Equal sign occurs when and only if a = b = c

  • ...
    Faded 28/01/2018 at 21:28

    Set A=a3+b3+c3; B=a2√bc+b2√ac+c2√ab

    Apply AM-GM inequality for 2 positive numbers 

    a3+abc≥2√a3.abc=2a2√bc

    b3+abc≥2√b3.abc=2b2√ac

    c3+abc≥2√c3.abc=2c2√ab

    Thence inferred A+3abc≥2B

    Need proof: 3abc≤A

     it mean 3abc≤a3+b3+c3, this is always true because of the AM-GM inequality we have a3+b3+c3≥33√a3.b3.c3=3abc

    Equal sign occurs when and only if a = b = c


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM