Summer Clouds moderators
26/07/2017 at 08:54-
Lufans 26/07/2017 at 15:01
Set \(A=a^3+b^3+c^3\); \(B=a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\)
Apply AM-GM inequality for 2 positive numbers
\(a^3+abc\ge2\sqrt{a^3.abc}=2a^2\sqrt{bc}\)
\(b^3+abc\ge2\sqrt{b^3.abc}=2b^2\sqrt{ac}\)
\(c^3+abc\ge2\sqrt{c^3.abc}=2c^2\sqrt{ab}\)
Thence inferred \(A+3abc\ge2B\)
Need proof: \(3abc\le A\) it mean \(3abc\le a^3+b^3+c^3\), this is always true because of the AM-GM inequality we have \(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\)
Equal sign occurs when and only if a = b = c
-
Faded 28/01/2018 at 21:28
Set A=a3+b3+c3; B=a2√bc+b2√ac+c2√ab
Apply AM-GM inequality for 2 positive numbers
a3+abc≥2√a3.abc=2a2√bc
b3+abc≥2√b3.abc=2b2√ac
c3+abc≥2√c3.abc=2c2√ab
Thence inferred A+3abc≥2B
Need proof: 3abc≤A
it mean 3abc≤a3+b3+c3, this is always true because of the AM-GM inequality we have a3+b3+c3≥33√a3.b3.c3=3abc
Equal sign occurs when and only if a = b = c