MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

30/08/2017 at 08:48
Answers
1
Follow

Given \(0\le x,y\le1\). Prove that :
\(x\sqrt{y}-y\sqrt{x}\le\dfrac{1}{4}\)
 




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 30/08/2017 at 14:08

    We have : \(x\le1\)\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\\sqrt{x}\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2\le x\\x\le\sqrt{x}\end{matrix}\right.\)\(\Rightarrow\sqrt{x}\ge x^2\)

    \(\Rightarrow y\sqrt{x}+\dfrac{1}{4}\ge yx^2+\dfrac{1}{4}\) (the equality happens when x = 0 or x = 1)

    Moreover, \(yx^2+\dfrac{1}{4}\ge2\sqrt{\dfrac{1}{4}yx^2}=x\sqrt{y}\)

    (the equality happens only when \(yx^2=\dfrac{1}{4}\))

    So, \(y\sqrt{x}+\dfrac{1}{4}\ge x\sqrt{y}\) or \(x\sqrt{y}-y\sqrt{x}\le\dfrac{1}{4}\)

    The equality happens when : \(\left\{{}\begin{matrix}x=1\\yx^2=\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{4}\end{matrix}\right.\)

    Selected by MathYouLike

Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM