MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

24/07/2017 at 09:12
Answers
5
Follow

Given \(a,b,c>0\) prove that \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)




    List of answers
  • ...
    Lufans 24/07/2017 at 11:13

    Applying the Cauchyschwarz inequality to the Engel form we have:

    \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

    We have things to prove

    Selected by MathYouLike
  • ...
    Kayasari Ryuunosuke Coordinator 24/07/2017 at 11:42

    Apply AM-GM inequality for 2 numbers , we have :

    \(\dfrac{a^3}{b}+ab\ge2.\sqrt{\dfrac{a^3}{b}.ab}=2a^2\)

    \(\dfrac{b^3}{c}+bc\ge2.\sqrt{\dfrac{b^3}{c}.bc}=2b^2\)

    \(\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{c^3}{a}.ca}=2c^2\)

    \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\)

    In another case , we have this :

    \(a^2+b^2+c^2\ge ab+bc+ca\) (The consequence of AM-GM)

    \(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

    \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2ab+2bc+2ca\)

    \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

  • ...
    Faded 28/01/2018 at 21:31

    Apply AM-GM inequality for 2 numbers , we have :

    a3b+ab≥2.√a3b.ab=2a2

    b3c+bc≥2.√b3c.bc=2b2

    c3a+ca≥2√c3a.ca=2c2

    ⇒a3b+b3c+c3a+ab+bc+ca≥2a2+2b2+2c2

    In another case , we have this :

    a2+b2+c2≥ab+bc+ca

     (The consequence of AM-GM)

    ⇔2a2+2b2+2c2≥2ab+2bc+2ca

    ⇒a3b+b3c+c3a+ab+bc+ca≥2ab+2bc+2ca

    ⇒a3b+b3c+c3a≥ab+bc+ca

  • ...
    Summer Clouds moderators 24/07/2017 at 14:04

    I choose Lufans's answer because it's simple.

  • ...
    Aim Egst 24/07/2017 at 13:31

    a,b>0; c<0 ? or c=0 ? seem to have a typo


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM