-
WhySoSerious 08/08/2017 at 14:42
Each triangle has an area of : \(\dfrac{s^2\cdot\sqrt{3}}{4}=\dfrac{4^2\cdot\sqrt{3}}{4}=4\sqrt{3}\)(inches).
SUM 4 triangles \(\left(4\sqrt{3}\right)\cdot4=16\sqrt{3}\left(inches\right)\)
The area of the square : \(4^2=16\left(inches\right)\)
The total area is \(16+16\sqrt{3}\left(inches\right)\)
Selected by MathYouLike
-
WhySoSerious 16/08/2017 at 15:14
We have \(x^2-2x+1=\left(x-1\right)^2\)
We know that x have 11 values, we apply each values into \(\left(x-1\right)^2\) to calculate, we recognize that only 7 elements that 0,1,4,9,16,25,36 are in set.
Lê Quốc Trần Anh selected this answer.
-
The number of remaining cats after the first round is : 66 - 21 = 45
Let x be the number of striped cats with one black ear or the number of finalists. We have the Venn diagram :
Hence : \(27+\left(32-x\right)=45\Leftrightarrow32-x=18\Leftrightarrow x=14\)
So, the answer is D
Selected by MathYouLike -
The number of cats gone to round 2 is: 66 - 21 = 45 (cats)
The minimum number of finalists is: 45 - 32 = 13 (C)
Choose C
lê minh đức
15/10/2017 at 18:04
-
\(\dfrac{1}{2}\cdot\dfrac{1}{6}\cdot...\cdot\dfrac{1}{110}=\dfrac{1}{1\cdot2}\cdot\dfrac{1}{2\cdot3}\cdot...\cdot\dfrac{1}{10\cdot11}\)
\(=\dfrac{1}{1\cdot2\cdot2\cdot3\cdot...\cdot10\cdot11}=\dfrac{1}{1\cdot2^2\cdot3^2\cdot...\cdot10^2\cdot11}\)
\(=\dfrac{1}{4\cdot9\cdot16\cdot...\cdot100\cdot11}=\dfrac{1}{13168189440000\cdot11}=\dfrac{1}{144850083840000}\):V, I think the question is:
\(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{110}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{10\cdot11}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}=1-\dfrac{1}{11}=\dfrac{10}{11}\)You should see again and write in English
-
Call + 1 binder with photos of celebrities on the cover: SB
+ 1 regular binder: RB
We have: \(1SB+8RB=32,60\left(dollars\right)\) and \(1SB+12RB=46,00\left(dollars\right)\)
So we have: \(\left(1SB+12RB\right)-\left(1SB-8RB\right)=4RB=46,00-32,60=13,40\left(dollars\right)\)
So \(1RB=13,40:4=3,35\left(dollars\right)\)
The cost of \(1SB=32,60-\left(3,35\cdot8\right)=5,80\left(dollars\right)\)
So it costs more to buy a celebrity binder than a regular binder: \(5,80-3,35=2,45\left(dollars\right)\)
Selected by MathYouLike
-
Alone 14/06/2018 at 01:00
With x=0 then \(0.f\left(2018\right)=2016.f\left(0\right)\Rightarrow f\left(0\right)=0\)
With x=-2018 then \(-2018.f\left(-2018+2018\right)=\left(-2018+2016\right).f\left(-2018\right)\)
\(\Rightarrow-2018.f\left(0\right)=-2.f\left(-2018\right)\).Because \(f\left(0\right)=0\) so \(-2f\left(-2018\right)=0\Rightarrow f\left(-2018\right)=0\)
So \(f\left(x\right)=0\) with x=0 and -2018
So
Lê Quốc Trần Anh selected this answer.
-
Because x,y are positive integers and \(x\times y=8\)
=> \(\left\{{}\begin{matrix}x=1;y=8\\x=2;y=4\\x=4;y=2\\x=8;y=1\end{matrix}\right.\)
Because \(x^y=y^x\)
=> \(\left\{{}\begin{matrix}x=2;y=4\\x=4;y=2\end{matrix}\right.\)
Huỳnh Anh Phương selected this answer. -
Kalila Thao Van 30/01/2019 at 06:05
i think the first x and y are 2 . the second i don't do it
-
Cristiano Ronaldo 03/08/2018 at 14:38
Plowed in the field
Thirsty to drink deep wells black water.
What is the trick?Answer: it's a pen
Hello selected this answer.