MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 1
  • 2
  • 3
  • 4
  • 5
  • » Last
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG

All questions

  • Newest
  • Featured
  • Votes
  • Unanswered

...
Nguyễn Huy Thắng
09/03/2017 at 20:58
Answers
1
Follow

Let \(a,b,c\) are positive real number satisfy \(a+b+c=1\). Prove that \(\dfrac{1}{\sqrt{\left (a^2+ab+b^2\right )\left (b^2+bc+c^2\right )}}+\dfrac{1}{\sqrt{\left (b^2+bc+c^2\right )\left (c^2+ca+a^2\right )}}+\dfrac{1}{\sqrt{\left (c^2+ca+a^2\right )\left (a^2+ab+b^2\right )}}\ge 4+\dfrac{8}{\sqrt{3}}\)

inequality

  • ...
    Nguyen Huu Ai Linh 10/12/2017 at 07:08

    That too long!


...
American
09/03/2017 at 09:39
Answers
7
Follow

(1974 Kiew Math Olympiad)

Numbers 1, 2, 3, ..., 1974 are written on the board. You are allowed to replace any two of these numbers by one number, which is either the sum or the difference of these two numbers. Show that after 1973 times performing this operations, the only number left on the board cannot be 0.

games

  • ...
    hghfghfgh 26/03/2017 at 20:16

    At the begining, there are 1974/2=987 odd numbers. When we replace two numbers a and b by a number either a + b or a - b, we see that:

    + if a odd and b even, or a even and b odd then a + b or a - b is still odd

    + if a and b are both even then a + b or a -b is still even

    + If a and  are both odd then a + b or a - b is even

    So the number of odd after each such replacement operation is stay the same or deacresed by two. At the begining, there is 987 odd numbers  (987 is odd) and the odd number left must be odd too. So at the final, only one number left, it must be odd number, it is not 0. (because 0 is even).haha

  • ...
    Faded 19/01/2018 at 14:52

    At the begining, there are 1974/2=987 odd numbers. When we replace two numbers a and b by a number either a + b or a - b, we see that:

    + if a odd and b even, or a even and b odd then a + b or a - b is still odd

    + if a and b are both even then a + b or a -b is still even

    + If a and  are both odd then a + b or a - b is even

    So the number of odd after each such replacement operation is stay the same or deacresed by two. At the begining, there is 987 odd numbers  (987 is odd) and the odd number left must be odd too. So at the final, only one number left, it must be odd number, it is not 0. (because 0 is even). [haha]

  • ...
    An Duong 10/03/2017 at 14:14

    At the begining, there are 1974/2=987 odd numbers. When we replace two numbers a and b by a number either a + b or a - b, we see that:

    + if a odd and b even, or a even and b odd then a + b or a - b is still odd

    + if a and b are both even then a + b or a -b is still even

    + If a and  are both odd then a + b or a - b is even

    So the number of odd after each such replacement operation is stay the same or deacresed by two. At the begining, there is 987 odd numbers  (987 is odd) and the odd number left must be odd too. So at the final, only one number left, it must be odd number, it is not 0. (because 0 is even).


...
Nguyễn Thị Ý Nhi
08/07/2017 at 09:40
Answers
12
Follow

hiuhiu30 x 40=

ai nhanh mk tk

  • ...
    triệu lệ dĩnh 08/07/2017 at 10:07

    30 x 40 = 1200

    tcik nha

    Nguyễn Thị Ý Nhi selected this answer.
  • ...
    Trần Quỳnh Anh 27/12/2017 at 19:15

    30.40

    =3.10.4.10

    =(3.4).(10.10)

    =12.100

    =1200

    So the answer is 1200

  • ...
    NGUYỄN SANH KIÊN 08/07/2017 at 11:30

    1200

    good luck !haha


...
vy nguyen mini
27/07/2018 at 02:00
Answers
1
Follow

Write the set Z of integers.gianroigianroigianroi

  • ...
    jimin bts cute 27/07/2018 at 02:01

    Z ={.....-3,-2.-1,0,1,2,3...}

    okokok

    vy nguyen mini selected this answer.

...
Vũ Hà Vy Anh
31/03/2017 at 21:45
Answers
7
Follow

Given the square ABCD with side 20 cm . M is midpoint of the BC , N is midpoint on CD.The segment AM and the segment BN intersect each other at O . find the area of the quadrilateral ANOD A B C D O N M

  • ...
    Nguyễn Đức Kiên 06/04/2017 at 17:15

    đúng là đề sai thật rồi . Nhìn nó cứ kì kì làm sao đấy .NhonhungNhonhungLolang

    Vũ Hà Vy Anh selected this answer.
  • ...
    Phan Thanh Tinh Coordinator 06/05/2017 at 09:53

    A B C D G N E O F

    Draw the altitudes AE,MF,NG as shown

    \(\dfrac{S_{\Delta ABN}}{S_{\Delta BMN}}=\dfrac{AB.NG}{2}:\dfrac{BM.NC}{2}=BC^2:\dfrac{BC}{2}:\dfrac{CD}{2}=4\)

    \(\Delta ABN,\Delta BMN\) also have the common base BN,so AE = 4MF

    \(\Delta ABO,\Delta BMO\) have the common base BO and the altitudes AE = 4MF,so \(S_{\Delta ABO}=4S_{\Delta BMO}\)

    \(\Rightarrow S_{\Delta ABO}=\dfrac{4}{1+4}\left(S_{\Delta ABO}+S_{\Delta BMO}\right)=\dfrac{4}{5}.S_{\Delta ABM}\) 

    \(=\dfrac{4}{5}.\dfrac{20.\left(20:2\right)}{2}=80\)(cm2)

    \(\Rightarrow S_{AOND}=S_{ABCD}-S_{\Delta ABO}-S_{\Delta BNC}\)

    = 20.20 - 80 - \(\dfrac{20.\left(20:2\right)}{2}\) = 220 (cm2)

  • ...
    Vũ Hà Vy Anh 06/04/2017 at 17:17

    ai bảo mình mới thi cấp thành phố hôm thứ 6 tuần trước nữa xong đó còn được cầm đề về mà


...
Hà Đức Thọ moderators
14/06/2017 at 15:35
Answers
3
Follow

A house has 10 rooms. Ten boys stay in different rooms and count the number of doors in them. After that they sum all results and receive 25. What a proposition can't be true about number N of doors which led outside the house?

double counting

  • ...
    tth 30/10/2017 at 15:14

    We have:

    25 do not divide to 10

    So 25 can't be true about number N of doors .

    Note: I'm not certain

  • ...
    Ma Kết 05/04/2018 at 14:42

    We have:

    25 do not divide to 10

    So 25 can't be true about number N of doors .

    Note: I'm not certain

  • ...
    Ma Kết 05/04/2018 at 14:41

    Hà Đức Thọ            


...
Phan Minh Anh
10/06/2017 at 15:54
Answers
9
Follow

Quick Count:

75+25+13+91+87+52+48+9+?

Ai tk mk thì sẽ mk tk lại

  • ...
    Phan Minh Anh 10/06/2017 at 15:57

    75+25+13+91+87+52+48+9

    =(75+25)+(13+87)+(91+9)+(52+48)

    =   100    +    100    +   100  +   100

    =   100x4

    =   400.

  • ...
    Help you solve math 14/08/2017 at 08:45

       75+25+13+91+87+52+48+9

    =(52+25)+(13+87)+(91+9)+(52+48)

    =1000+100+100+100=100x4

    =400

       mk 

  • ...
    Vũ Hà Vy Anh 12/06/2017 at 07:50

    75 + 25 + 13 + 91 + 87 + 52 + 48 + 9

    = ( 75  +  25 ) + ( 13 + 87 ) + ( 91 + 9 ) + ( 52 + 48 )

    = 100 + 100 + 100 + 100

    = 100 . 4

    = 400


...
Akira Kimura
26/04/2017 at 11:40
Answers
10
Follow

 

Which numbers are divisible by two ?

  • ...
    Tokisaki Kurumi 26/04/2017 at 11:47


    The finite numbers are 0,2,4,6,8
     

  • ...
    Nguyễn Thị Thanh Hiền 08/05/2018 at 06:45

    Numbers divisible by 2 have the last digits of 0, 2, 4, 6, 8

  • ...
    Nguyen Huu Ai Linh 10/12/2017 at 07:16

    The even number or The last right is all these number:" 0; 2; 4; 6; 8."


...
Kurosaki Akatsu Coordinator
10/03/2017 at 11:33
Answers
2
Follow

Give square triangle ABC with B = 600 , A = 900 and AB = 4cm

Calculator : AC and BC 

  • ...
    mathlove 12/03/2017 at 12:37

    A B C D O  


    Suppose that the triangle ABC has A = 900, B = 600, AB = 4.  We construct the rectangle ABCD with center O.  By the assumption B = 600 , assune that OAB is a equilateral triangle; OB = AB = 4, BC = 8. By the theorem Pytagor we have

    \(AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-4^2}=4\sqrt{3}\).  So  \(BC=8,CA=4\sqrt{3}\).


     


     

    Selected by MathYouLike
  • ...
    Kudo Shinichi 22/03/2017 at 22:13

    It so good for me in the future , thanks you :))

    undefined


...
Phan Minh Anh
10/06/2017 at 16:15
Answers
15
Follow

Two ducks go before two ducks. Two ducks go after two ducks. Two ducks go between two ducks. How many ducks are there?

games

  • ...
    Phan Minh Anh 10/06/2017 at 16:16

    There are four ducks.

    Ai tk cho mk thì mk sẽ tk lại! ok

  • ...
    Trần Đức Huy 15/05/2018 at 08:21

    there are four ducks

  • ...
    Nguyễn Thị Thanh Hiền 08/05/2018 at 06:47

    there are four ducks


...
Phan Minh Anh
10/06/2017 at 16:20
Answers
17
Follow

What the mountains cut int pieces?

Ai tk mk thì mk sẽ tk lại

games

  • ...
    Phan Minh Anh 14/06/2017 at 12:58

    It Thai Son mountain.

  • ...
    Đỗ Thanh Hải 29/06/2017 at 09:51

    Núi Thái Sơn nha Bạn

  • ...
    Phan Minh Anh 10/06/2017 at 16:21

    Sorry: What the mountains cut into pieces?


...
Nguyễn Nhật Minh
02/04/2017 at 11:25
Answers
2
Follow

Prove that E = \(\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\).

Fractioninequality

  • ...
    FA KAKALOTS 28/01/2018 at 22:08

    For any natural number n > 1,we have :

    (n - 1)n(n + 1) = n(n2 - 1) = n3 - n < n3

    ⇒1n3<1(n−1)n(n+1)

    1(n−1)n(n+1)=1n.1(n−1)(n+1)

    =1n.(n+1)−(n−1)(n−1)(n+1).12=12.1n.(1n−1−1n+1)

    =12.(1(n−1)n−1n(n+1))

    Now we have :

    E < 12.3.4+13.4.5+14.5.6+...+1(n−1)n(n+1)

    =12(12.3−13.4)+12(13.4−14.5)+12(14.5−15.6)+...+12(1(n−1)n−1n(n+1))

    =12(12.3−1n(n+1))=112−12n(n+1)<112

    Hence,E<112

  • ...
    Phan Thanh Tinh Coordinator 24/04/2017 at 13:50

    For any natural number n > 1,we have :

    (n - 1)n(n + 1) = n(n2 - 1) = n3 - n < n3

    \(\Rightarrow\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

    \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{n}.\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

    \(=\dfrac{1}{n}.\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}.\dfrac{1}{2}=\dfrac{1}{2}.\dfrac{1}{n}.\left(\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

    \(=\dfrac{1}{2}.\left(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)

    Now we have :

    E < \(\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

    \(=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+\dfrac{1}{2}\left(\dfrac{1}{3.4}-\dfrac{1}{4.5}\right)+\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{5.6}\right)+...+\dfrac{1}{2}\left(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)

    \(=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{1}{12}-\dfrac{1}{2n\left(n+1\right)}< \dfrac{1}{12}\)

    Hence,\(E< \dfrac{1}{12}\)


...
HỦY DIỆT THE WORLD
08/01/2018 at 20:57
Answers
1
Follow

Shorten the following expression :

\(\dfrac{x^3+x^2-x-1}{x^2-6x+5}\)

  • ...
    FA Liên Quân Garena 08/01/2018 at 21:09

    We have :

    \(=\dfrac{\left(x^3+x^2\right)-\left(x+1\right)}{x^2-5x-x+5}\)

    \(=\dfrac{x^2\left(x+1\right)-\left(x+1\right)}{x\left(x-1\right)-5\left(x-1\right)}\)

    \(=\dfrac{\left(x-1\right)\left(x+1\right)^2}{\left(x-5\right)\left(x-1\right)}\)

    \(=\dfrac{\left(x+1\right)^2}{x-5}\)
     

    HỦY DIỆT THE WORLD selected this answer.

...
Nguyen Tuan Anh
14/03/2017 at 14:16
Answers
4
Follow

Find all triangles whose sides are consecutive integer and areas are alse integers.

Pell Equation

  • ...
    Thao Dola 14/03/2017 at 14:23

    The first such triple is 8 = \(2^2+2^2\),9 = \(3^3+0^2\),10=\(3^2+1^2\), which suggests we consider triples \(x^2-1,x^2,x^2+1\).Since \(x^2-2y^2=1\) has infinitely many positive solutions (x,y), we see that \(x^2-1=y^2+y^2,x^2=x^2+0^2\)and \(x^2+1\) satisfy the requiment and there are infinitely many such triples.

    Selected by MathYouLike
  • ...
    FA KAKALOTS 28/01/2018 at 22:12

    The first such triple is 8 = 22+22,9 = 33+02,10=32+12, which suggests we consider triples x2−1,x2,x2+1.Since x2−2y2=1 has infinitely many positive solutions (x,y), we see that x2−1=y2+y2,x2=x2+02and x2+1 satisfy the requiment and there are infinitely many such triples.

  • ...
    Such doge 14/03/2017 at 21:03

    Wowe it hard


...
FA Liên Quân Garena
30/12/2017 at 21:41
Answers
1
Follow

 a , Given two real numbers x , y satisfy :

\(x^2-2y^2=xy\) ( x + y other than 0 and y other than 0 )

Calculate the value of the expression :

\(P=\dfrac{x-y}{x+y}\)

b , Find the integer (x , y) pair satisfying :

\(x^2+xy-2016x-2017y-2018=0\)

  • ...
    Dao Trong Luan Coordinator 31/12/2017 at 10:33

    a.

    \(x^2-2y^2=xy\)

    \(\Leftrightarrow x^2-2y^2-xy=0\)

    \(\Leftrightarrow\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

    \(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

    \(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

    \(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

    But \(x+y\ne0\)

    \(\Rightarrow x-2y=0\Leftrightarrow x=2y\)

    \(\Rightarrow P=\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)


...
FA Liên Quân Garena
30/12/2017 at 21:59
Answers
4
Follow

Polynomial Analysis into Factors :

\(x^3-x^2-4x^2+8x+4\)

  • ...
    Alone 31/12/2017 at 11:19

    Continue Dao Trong Luan'answer:

    \(\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\)

    \(=\left(x-1\right)\left(x^2-4x+4\right)\)

    \(=\left(x-1\right)\left(x-2\right)^2\)

    FA Liên Quân Garena selected this answer.
  • ...
    FA Liên Quân Garena 01/01/2018 at 10:26

    I edited the subject

    x3−x2−4x2+8x−4

    =x2(x−1)−(4x2−8x+4)

    =x2(x−1)−[(2x)2−2⋅2x⋅2+22]

    =x2(x−1)−(2x−2)2

    =x2(x−1)−4(x−1)2

    =(x−1)[x2−4(x−1)]

    (x−1)[x2−4(x−1)]

    =(x−1)(x2−4x+4)

    =(x−1)(x−2)2

  • ...
    Hương Yêu Dấu 31/12/2017 at 13:33

    We have :

    (x - 1) . [x2 - 4 . (x - 1)]

    <=> (x - 1) . (x2 - 4x + 4)

    => (x - 1). (x - 2)2

    This is brief


...
FA Liên Quân Garena
30/12/2017 at 22:00
Answers
1
Follow

find x :

\(\left(x+1\right)\left(x-3\right)-\left(x+5\right)\left(x-5\right)\left(x-2\right)=0\)

  • ...
    Alone 31/12/2017 at 11:07

    We have:\(\left(x+1\right)\left(x-3\right)-\left(x+5\right)\left(x-5\right)\left(x-2\right)=0\)

    \(\Leftrightarrow x^2-2x-3-\left(x^2-25\right)\left(x-2\right)=0\)

    \(\Leftrightarrow x^2-2x-3-x^3+2x^2+25x-50=0\)

    \(\Leftrightarrow3x^2-x^3+23x-53=0\)

    \(\Leftrightarrow x^2\left(3-x\right)-23\left(3-x\right)+16=0\)

    \(\Leftrightarrow\left(x^2-23\right)\left(3-x\right)+16=0\)

    \(\Rightarrow x^2-23\in\left\{-16,-8,-4,-2,-1,1,2,4,8,16\right\}\)

    \(\Rightarrow x^2\in\left\{7,15,19,21,22,24,25,27,31,39\right\}\)

    Because 3-x is a integer number so x is a integer number so \(x^2=25\) and 3-x=-8

    \(\Rightarrow\) x=\(\pm\)5 and x=11 (unsatisfactory)

    So not have x satisfy

    FA Liên Quân Garena selected this answer.

...
FA Liên Quân Garena
30/12/2017 at 22:03
Answers
1
Follow

Simplified :

\(x^2-1-\dfrac{x^4-3x^2-4}{x^2+1}\)

  • ...
    Lightning Farron 30/12/2017 at 23:44

    Stop Touching YourSelf, please =((


...
Nguyễn Thị Huyền Mai
13/04/2017 at 22:42
Answers
1
Follow

Solve the system of equations: 

\(\left\{{}\begin{matrix}17x+2y=2011\left|xy\right|\\x-2y=3xy\end{matrix}\right.\)

 

  • ...
    Ngu Ngu Ngu 13/04/2017 at 22:55

    Put the equation above is \(\left(1\right)\)

    If \(xy>0\) then:

    \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{17}{y}+\dfrac{2}{x}=2011\\\dfrac{1}{y}-\dfrac{2}{x}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1007}{9}\\\dfrac{1}{x}=\dfrac{490}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{490}\\y=\dfrac{9}{1007}\end{matrix}\right.\) (satisfy)

    If  \(xy< 0\) then:

    \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{17}{y}+\dfrac{2}{x}=-2011\\\dfrac{1}{y}-\dfrac{2}{x}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=-\dfrac{1004}{9}\\\dfrac{1}{x}=-\dfrac{1031}{18}\end{matrix}\right.\)\(\Rightarrow xy>0\)  (unsatisfactory)

    If \(xy=0\) then: \(\left(1\right)\Leftrightarrow x=y=0\) (satisfy)

    Conclude: equations have 2 solutions: \(\left(0;0\right)\) and \(\left(\dfrac{9}{490};\dfrac{9}{1007}\right)\)

    Nguyễn Thị Huyền Mai selected this answer.

...
Use Ka Ti
14/04/2017 at 08:02
Answers
1
Follow

Solve the equation:

\(2\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)-16=0\)

 

  • ...
    Ngu Ngu Ngu 14/04/2017 at 08:08

    \(2\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)-16=0\left(1\right)\)

    Condition: \(x\ne0\)

    Put \(t=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=t^2-2\)

    \(\left(1\right)\Leftrightarrow2t^2+3t-20=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-4\\t=\dfrac{5}{2}\end{matrix}\right.\)

    If \(t=-4\Rightarrow x=-2\pm\sqrt{3}\)

    If \(t=\dfrac{5}{2}\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

    Conclude:...

    Use Ka Ti selected this answer.

4801

questions

Weekly ranking


Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 17  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
Trigonometric
sin cos tan cot sinh cosh tanh
Lim-log

Combined operations

 

α β γ δ θ σ ∂ ε ω φ ϕ π μ λ Ψ ξ η χ ζ ι κ ν ψ Ω ρ τ υ Γ Δ Λ Φ Π Σ Υ Ξ ϑ Θ ς ϰ
∞ ⊻ ⩞ ⋎ ⋏ ≀ ∪ ⊎ ⋓ ∩ ⋒ ⊔ ⊓ ⨿ ⊗ ⊙ ⊚ ⊛ ⊘ ⊝ ⊕ ⊖ ⊠ ◯ ⊥
⇔ ⇒ ⇐ → ← ↔ ↑ ↓
Operations
+ - ÷ × ≠ = ⊂ ⊃ ⊆ ⊇ ≈ ∈ ∉ ∃ ∄ ≤ ≥ ± ∓ ≠ ∅ ≃ ≅ ≡ ⋮ ⋮̸ ∀
(□) [□] {□} |□|

The type of system

m×n 1×2 1×3 1×4 1×5 1×6
2×1 2×2 2×3 2×4 2×5 2×6
3×1 3×2 3×3 3×4 3×5 3×6
4×1 4×2 4×3 4×4 4×5 4×6
5×1 5×2 5×3 5×4 5×5 5×6
6×1 6×2 6×3 6×4 6×5 6×6

Recipe:

© HCEM 10.1.29.225
Crafted with by HCEM