MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 375
  • 376
  • 377
  • 378
  • 379
  • » Last
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG

All questions

  • Newest
  • Featured
  • Votes
  • Unanswered

...
Run my EDM
21/03/2017 at 21:32
Answers
1
Follow

\(\dfrac{1}{\left(x+29\right)^2}+\dfrac{1}{\left(x+30\right)^2}=\dfrac{5}{4}\)

What is the product of all real solutions to the equation above?

  • ...
    Aomike 22/03/2017 at 21:03

    Set x + 29 = t       (*)

    The given equation becomes: \(\dfrac{1}{t^2}+\dfrac{1}{\left(t+1\right)^2}=\dfrac{5}{4}\)

    \(\Leftrightarrow\dfrac{\left(t+1\right)^2+t^2}{t^2\left(t+1\right)^2}=\dfrac{5}{4}\)

    \(\Leftrightarrow\dfrac{t^2+2t+1+t^2}{t^2\left(t^2+1+2t\right)}=\dfrac{5}{4}\)

    \(\Leftrightarrow4\left(t^2+2t+1+t^2\right)=5t^2\left(t^2+1+2t\right)\)

    \(\Leftrightarrow\) 8t2 + 8t + 4 = 5t4 + 5t2 + 10t3

    \(\Leftrightarrow\) 5t4 + 10t3 - 3t2 - 8t - 4 = 0

    \(\Leftrightarrow\) 5t4 - 5t3 + 15t3 - 15t2 + 12t2 - 12t + 4t - 4 = 0

    \(\Leftrightarrow\left(t-1\right)\left(5t^3+15t^2+12t+4\right)=0\)

    \(\Leftrightarrow\left(t-1\right)\left(5t^3+10t^2+5t^2+10t+2t+4\right)=0\)

    \(\Leftrightarrow\left(t-1\right)\left(t+2\right)\left(5t^2+5t+2\right)=0\)

    \(\Leftrightarrow\left(t-1\right)\left(t+2\right).5.\left[\left(t+\dfrac{5}{4}\right)^2-\dfrac{93}{80}\right]=0\)

    \(\Rightarrow\left[{}\begin{matrix}t-1=0\\t+2=0\\\left(t+\dfrac{5}{4}\right)^2-\dfrac{93}{80}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\\\left(t+\dfrac{5}{4}\right)^2=\dfrac{93}{80}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\\t=\dfrac{-25+\sqrt{465}}{20}\\t=\dfrac{-25-\sqrt{465}}{20}\end{matrix}\right.\)

    Now just replace (*) is ok

    Run my EDM selected this answer.

...
Hiyata Minamoto
17/05/2017 at 15:18
Answers
1
Follow

Suppose that a,b,c,d are four distinct positive integers. A greatest possible number m and a least possible number n are formed by using the four numbers {a,b,c,d} as digits. If m+n=1330 and m,nare both four-digit numbers, what is the value of a+b+c+d?

  • ...
    An Duong 19/05/2017 at 17:20

    Assume that 0 < a < b < c < d.

    The greatest number m formed by using the four digits is \(\overline{dcba}\).

    And the least number n formed by using the four digits is \(\overline{abcd}\).

    We have: \(\overline{dcba}+\overline{abcd}=1330\)

    since \(\overline{abcd}>1000\) and \(\overline{dcba}>1000\) => ​ ​​ ​\(\overline{dcba}+\overline{abcd}>2000\).

    Therefore, there is no a, b, c, d sastifies the problem.


...
Lê Quốc Trần Anh Coordinator
16/08/2017 at 09:28
Answers
1
Follow

The digits 2, 0, 1 and 4 are used to create every possible positive four-digit integer, with each digit used exactly once in each integer. What is the arithmetic mean of all these integers?

  • ...
    WhySoSerious 16/08/2017 at 15:10

    The list that 2, 0, 1 and 4 are used to create is :

    1024 2014 4012
    1042 2041 4021
    1240 2104 4210
    1204 2140 4201
    1402 2401 4102
    1420 2410 4120

    The sum of all numbers is : 45108.

    So the arithmetic mean of all these integers is \(\dfrac{45108}{16}=2506\)

    Selected by MathYouLike

...
Summer Clouds moderators
30/08/2017 at 08:48
Answers
1
Follow

Given \(0\le x,y\le1\). Prove that :
\(x\sqrt{y}-y\sqrt{x}\le\dfrac{1}{4}\)
 

  • ...
    Phan Thanh Tinh Coordinator 30/08/2017 at 14:08

    We have : \(x\le1\)\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\\sqrt{x}\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2\le x\\x\le\sqrt{x}\end{matrix}\right.\)\(\Rightarrow\sqrt{x}\ge x^2\)

    \(\Rightarrow y\sqrt{x}+\dfrac{1}{4}\ge yx^2+\dfrac{1}{4}\) (the equality happens when x = 0 or x = 1)

    Moreover, \(yx^2+\dfrac{1}{4}\ge2\sqrt{\dfrac{1}{4}yx^2}=x\sqrt{y}\)

    (the equality happens only when \(yx^2=\dfrac{1}{4}\))

    So, \(y\sqrt{x}+\dfrac{1}{4}\ge x\sqrt{y}\) or \(x\sqrt{y}-y\sqrt{x}\le\dfrac{1}{4}\)

    The equality happens when : \(\left\{{}\begin{matrix}x=1\\yx^2=\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{4}\end{matrix}\right.\)

    Selected by MathYouLike

...
Kaya Renger Coordinator
15/10/2017 at 22:29
Answers
1
Follow

Given expression B = (x2 + 1)(y2 + 1) - (x + 4)(x - 4) - (y - 5)(y + 5) 

Prove that : B \(\ge\) 42 \(\forall x,y\)  . Which value of x,y that B = 42 .

  • ...
    Phan Thanh Tinh Coordinator 15/10/2017 at 23:28

    B = (x2 + 1)(y2 + 1) - (x + 4)(x - 4) - (y - 5)(y + 5)

    = x2y2 + x2 + y2 + 1 - x2 + 16 - y2 + 25

    = x2y2 + 42 \(\ge42\forall x,y\)

    The equality happens when :

    \(xy=0\Rightarrow\left[{}\begin{matrix}x=0;y\ne0\\x\ne0;y=0\\x=y=0\end{matrix}\right.\)

    Kaya Renger selected this answer.

...
Cloud moderators
30/11/2017 at 13:55
Answers
3
Follow

Mr. Jones makes 3% commission on his sales of widgets. At a different company, Mr. Smith makes 5% commission selling the same widgets at the same price. Mr. Smith sold 500 fewer widgets than Mr. Jones, and they both earned the same commission. How many widgets did Mr. Smith sell?

  • ...
    Dao Trong Luan Coordinator 30/11/2017 at 18:14

    Tell the commission of Mr. Jones and Mr. Smith  is a and b

    a = 3% widgets

    b = 5% widgets

    => a/b = 3/5

    => The answer is: 500/5.3 = 300 widgets

  • ...
    Vũ Mạnh Hùng 03/12/2017 at 13:13

    mr. jones make commission more than mr. smith:

    5-3=2(%)

    mr.smith sold

    (500:2%)*3=750(widgets)

  • ...
    Lê Quốc Trần Anh Coordinator 30/11/2017 at 17:53

    Mr Smith makes the commission more than Mr Jones: \(5\%-3\%=2\%\)

    Mr Smith sold: \(\left(500:2\%\right)\cdot3\%=750\left(widgets\right)\)


...
Lê Quốc Trần Anh Coordinator
08/04/2018 at 06:03
Answers
0
Follow

The sum of the digits of each of four different three-digit numbers is the same,
and the sum of these four numbers is 2015. Find the sum of all possible values
of the common digit sum of the four numbers


...
Huỳnh Anh Phương
10/07/2018 at 04:16
Answers
0
Follow

Let @ a + 2 # 8 is the value of \(2a\left(8+a\right)\times\left(2+8\right)\). For example , @ 4 + 2 # 8 = 2 x 4 ( 8 + 4 ) x ( 2 + 8 ) = 8 x 12 x 10 = 960. What is the value of ( ( @ 9 + 2 # 8 ) + 223 x  8 ) + 8388608 ?


...
Hello
03/08/2018 at 14:38
Answers
1
Follow

No fruit, no tree
But there are seeds falling out of place
The tree fell off happy
Animals find shelter to hide.
What is the quiz?

  • ...
    Cristiano Ronaldo 03/08/2018 at 14:39

    No fruit, no tree
    But there are seeds falling out of place
    The tree fell off happy
    Animals find shelter to hide.
    What is the quiz?

    Answer: It's a raindrops

    Hello selected this answer.

...
Quoc Tran Anh Le Coordinator
09/09/2018 at 09:51
Answers
0
Follow

A circle is inscribed in a hexagon ABCDEF so that each side of the hexagon is tangent to the circle. Find the perimeter of the hexagon if AB = 6, CD = 7, and EF = 8.

AIMO


4801

questions

Weekly ranking

  • ...

    Trần Nhật Quỳnh

    This week's point: . Total: 0
  • ...

    haiplt

    This week's point: . Total: 6
  • ...

    at the speed of light

    This week's point: . Total: 0
  • ...

    Cô Nàng Lạnh Lùng

    This week's point: . Total: 0
  • ...

    Use Ka Ti

    This week's point: . Total: 0
  • ...

    lamber love liya

    This week's point: . Total: 0
  • ...

    Nguyễn Thị Huyền Mai

    This week's point: . Total: 0
  • ...

    Ngu Ngu Ngu

    This week's point: . Total: 24
  • ...

    phan gia huy

    This week's point: . Total: 1
  • ...

    Nguyễn Phương Ly Fan Triệu Lệ Dĩnh

    This week's point: . Total: 0

Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 17  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
Trigonometric
sin cos tan cot sinh cosh tanh
Lim-log

Combined operations

 

α β γ δ θ σ ∂ ε ω φ ϕ π μ λ Ψ ξ η χ ζ ι κ ν ψ Ω ρ τ υ Γ Δ Λ Φ Π Σ Υ Ξ ϑ Θ ς ϰ
∞ ⊻ ⩞ ⋎ ⋏ ≀ ∪ ⊎ ⋓ ∩ ⋒ ⊔ ⊓ ⨿ ⊗ ⊙ ⊚ ⊛ ⊘ ⊝ ⊕ ⊖ ⊠ ◯ ⊥
⇔ ⇒ ⇐ → ← ↔ ↑ ↓
Operations
+ - ÷ × ≠ = ⊂ ⊃ ⊆ ⊇ ≈ ∈ ∉ ∃ ∄ ≤ ≥ ± ∓ ≠ ∅ ≃ ≅ ≡ ⋮ ⋮̸ ∀
(□) [□] {□} |□|

The type of system

m×n 1×2 1×3 1×4 1×5 1×6
2×1 2×2 2×3 2×4 2×5 2×6
3×1 3×2 3×3 3×4 3×5 3×6
4×1 4×2 4×3 4×4 4×5 4×6
5×1 5×2 5×3 5×4 5×5 5×6
6×1 6×2 6×3 6×4 6×5 6×6

Recipe:

© HCEM 10.1.29.225
Crafted with by HCEM