MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 371
  • 372
  • 373
  • 374
  • 375
  • » Last
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG

All questions

  • Newest
  • Featured
  • Votes
  • Unanswered

...
Hương Yêu Dấu
01/01/2018 at 09:42
Answers
3
Follow

I love you 

Add fill

  • ...
    Help you solve math 01/01/2018 at 10:27

    P/s : Cho là mình học ngu như longia nói đi những mình tin vào khả năng của mình và mình sẽ không bỏ cuộc 

    Còn bạn là người không có đạo đức chưa suy nghĩ trước khi nói

    Xin hết !

    Nhờ cloud giúp đỡ 

  • ...
    longia 01/01/2018 at 10:24

    Tao đồng ý với Hương Yêu Dấu nói rất đúng thằng Help you solve math rất ngu

    Thằng đấy học ngu lắm

    Chắc vậy !

  • ...
    Help you solve math 01/01/2018 at 10:14

    P/s : Bạn không nên đăng những câu hỏi linh tinh như vậy trên diễn đàn:

    Tôi mong bạn khắc phục


...
Baddy
10/02/2018 at 18:34
Answers
1
Follow

bucminh jenny has 1 cakes

  • ...
    Duy Trần Đức 11/02/2018 at 08:29

    banhI don't know?undefined


...
Alone
07/04/2018 at 13:55
Answers
2
Follow

Prove that P\(=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.......+\dfrac{1}{2013^2}\) isn't a integer

  • ...
    FC Alan Walker 08/04/2018 at 03:28

    We can easily prove that P>0.

    We have: \(P=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}\)

                                                                     \(=1-\dfrac{1}{2013}< 1\)

    \(\Rightarrow0< P< 1\)

    So P isn't a integer.

    Alone selected this answer.
  • ...
    ¤« 08/04/2018 at 15:04

    We can easily prove that P>0.

    We have: P=122+132+...+120132<11.2+12.3+...+12012.2013

                                                                     =1−12013<1

    ⇒0<P<1

    So P isn't a integer.


...
Lê Quốc Trần Anh Coordinator
11/06/2018 at 02:13
Answers
0
Follow

Find \(n\in N\) so that \(\dfrac{n^2+3n}{4}\) is a prime number


...
Lê Quốc Trần Anh Coordinator
08/07/2018 at 06:18
Answers
0
Follow

A line segment has endpoints (−5, 10) and (a, b). If the midpoint of the segment is (13, −2), what is the absolute difference between a and b?

Mathcounts


...
Face586
03/08/2018 at 14:28
Answers
1
Follow

In the same year he lived in a house
Parenting in the harmony
The old man was three
An old man was two years old.
What is the trick?

  • ...
    Cristiano Ronaldo 03/08/2018 at 14:28

    In the same year he lived in a house
    Parenting in the harmony
    The old man was three
    An old man was two years old.
    What is the trick?

    Answer: It's five fingers


...
Huỳnh Anh Phương
03/09/2018 at 12:52
Answers
5
Follow

What is B ?

12 21 30 30 39 48 39 48 B 66 B 48 66 75 84 B 66 75 84 91 102

Math Puzzles

  • ...
    Huy Toàn 8A (TL) 03/09/2018 at 13:55

    We have a sequence of numbers :

    \(12;21;30;39;48;B;66;...\)

    The numbers separated by 9 units 

    => B = 48 + 9 = 57

    So B = 57

    Selected by MathYouLike
  • ...
    mylifepathinheaven130609 19/09/2018 at 14:53

    hmmmmmmmmmmmmmm......

    i dunno

    hi im psycho i knifes and i'm 9 years old

  • ...
    Bùi Vũ Hoàng Linh 21/01/2019 at 12:47

    B là 57


...
Maths
16/05/2017 at 18:48
Answers
3
Follow

a bug has 6 legs . how many legs are there of 45 bugs

  • ...
    Vũ Hà Vy Anh 16/05/2017 at 18:49

    45 x 6 = 270 (legs )

    there are 270 legs of 45 bugs

    Maths selected this answer.
  • ...
    Nguyễn Thị Thu Thủy 17/05/2017 at 12:11

    Maths

                                  6 x 45 = 270 ( legs ) 

     MathYou    

  • ...
    Nguyễn Phương Linh 17/05/2017 at 16:38

    The number of legs of 45 bugs are:

    6 x 45 = 270 (legs)

                Answer: 270 legs.


...
Summer Clouds moderators
28/06/2017 at 08:54
Answers
2
Follow

Three small equilateral triangle of the same size are cut from the corners of the larger equilateral triagle with sides of 6cm, as shown.
undefined
The sum of the perimeters of the three small triangle is equal to the perimeter green hexagon.
What is the side length of the small triangle?
A. 1cm
B. 1,2cm
C. 1,25cm
D. 1,5cm
E. 2cm

  • ...
    Phan Thanh Tinh Coordinator 28/06/2017 at 10:48

    A B C D E F a a a a a a a a a

    Name the points as shown and let a be the length of the side of each small equilateral triangle in cm,then AF = BC = DE = 6 - 2a

    The perimeter of the hexagon is : 3a + 3(6 - 2a) = 3(6 - a) = 18 - 3a

    The sum of the perimeters of 3 small triangles is : 3a x 3 = 9a

    \(\Rightarrow18-3a=9a\Rightarrow12a=18\Rightarrow a=1.5\)

    Hence,the answer is D

  • ...
    Lê Quốc Trần Anh Coordinator 28/06/2017 at 09:10

    The answer is B: 1,2cm.

    The sum of the perimeters of the 3 small triangles are: \(1,2\cdot3\cdot3=10,8\left(cm\right)\)

    The length of the side of the green hexagon is: \(6-1,2\cdot2=3,6\left(cm\right)\)

    Because there are 2 sides of the hexagon are not in the perimeter of the big triangle so that the perimeter of the big triangle is: \(10,8\cdot2-\left(10,8:6\cdot2\right)=18\left(cm\right)\) <1>

    The perimeter of the big triangle is: \(6\cdot3=18\left(cm\right)\) <2>

    Because <1> = <2> \(\left(18cm=18cm\right)\)

    => The side of the small triangle is B: 1,2cm.


...
Summer Clouds moderators
08/08/2017 at 08:44
Answers
2
Follow

Jude ate 100 cookies in five days. On each day, he ate 6 more than on the previous day. How many cookies did he eat on the fifth day?

  • ...
    Lê Quốc Trần Anh Coordinator 08/08/2017 at 08:52

    The average of 5 days he ate is: \(100:5=20\left(cookies\right)\)

    The cookies he eat in 5 days has the distance: \(-12;-6;0;6;12\).

    So the cookies he ate on the fifth day is: \(20+12=32\left(cookies\right)\)

    Selected by MathYouLike
  • ...
    Phan Thanh Tinh Coordinator 08/08/2017 at 08:51

    Let x be the number of cookies he ate in the 3rd day,then the number of cookies he ate in the 1st,2nd,4th,5th are x - 12 ; x - 6 ; x + 6 ; x + 12 \(\left(x>12\right)\) .We have :

    \(\left(x-12\right)+\left(x-6\right)+x+\left(x+6\right)+\left(x+12\right)=100\)

    \(\Rightarrow5x=100\Rightarrow x=20\Rightarrow x+12=32\)

    So,he ate 32 cookies on the fifth day


4801

questions

Weekly ranking

  • ...

    Trần Nhật Quỳnh

    This week's point: . Total: 0
  • ...

    haiplt

    This week's point: . Total: 6
  • ...

    at the speed of light

    This week's point: . Total: 0
  • ...

    Cô Nàng Lạnh Lùng

    This week's point: . Total: 0
  • ...

    Use Ka Ti

    This week's point: . Total: 0
  • ...

    lamber love liya

    This week's point: . Total: 0
  • ...

    Nguyễn Thị Huyền Mai

    This week's point: . Total: 0
  • ...

    Ngu Ngu Ngu

    This week's point: . Total: 24
  • ...

    phan gia huy

    This week's point: . Total: 1
  • ...

    Nguyễn Phương Ly Fan Triệu Lệ Dĩnh

    This week's point: . Total: 0

Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 17  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
Trigonometric
sin cos tan cot sinh cosh tanh
Lim-log

Combined operations

 

α β γ δ θ σ ∂ ε ω φ ϕ π μ λ Ψ ξ η χ ζ ι κ ν ψ Ω ρ τ υ Γ Δ Λ Φ Π Σ Υ Ξ ϑ Θ ς ϰ
∞ ⊻ ⩞ ⋎ ⋏ ≀ ∪ ⊎ ⋓ ∩ ⋒ ⊔ ⊓ ⨿ ⊗ ⊙ ⊚ ⊛ ⊘ ⊝ ⊕ ⊖ ⊠ ◯ ⊥
⇔ ⇒ ⇐ → ← ↔ ↑ ↓
Operations
+ - ÷ × ≠ = ⊂ ⊃ ⊆ ⊇ ≈ ∈ ∉ ∃ ∄ ≤ ≥ ± ∓ ≠ ∅ ≃ ≅ ≡ ⋮ ⋮̸ ∀
(□) [□] {□} |□|

The type of system

m×n 1×2 1×3 1×4 1×5 1×6
2×1 2×2 2×3 2×4 2×5 2×6
3×1 3×2 3×3 3×4 3×5 3×6
4×1 4×2 4×3 4×4 4×5 4×6
5×1 5×2 5×3 5×4 5×5 5×6
6×1 6×2 6×3 6×4 6×5 6×6

Recipe:

© HCEM 10.1.29.225
Crafted with by HCEM